Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

E2F2 converts reversibly differentiated PC12 cells to an irreversible, neurotrophin-dependent state

Abstract

E2Fs play a central role in cell proliferation and growth arrest through their ability to regulate genes involved in cell cycle progression, arrest and apoptosis. Recent studies further indicate that this family of transcriptional regulators participate in cell fate/differentiation events. They are thus likely to have a prominent role in controlling the terminal differentiation process and its irreversibility. Here we have specifically examined the role of E2F2 in neuronal differentiation using a gain-of-function approach. Endogenous E2F2 increased in PC12 cells in response to nerve growth factor (NGF) and was also expressed in cerebellar granule neurons undergoing terminal differentiation. While PC12 cells normally undergo reversible dedifferentiation and cell cycle re-entry upon NGF removal, forced expression of E2F2 inhibited these events and induced apoptosis. Thus, E2F2 converted PC12-derived neurons from a reversible to a ‘terminally’ differentiated, NGF-dependent state, analogous to postmitotic sympathetic neurons. This contrasts with the effects of E2F4, which enhances the differentiation state of PC12 cells without affecting cell cycle parameters or survival. These results indicate that E2F2 may have a unique role in maintaining the postmitotic state of terminally differentiated neurons, and may participate in apoptosis in neurons attempting to re-enter the cell cycle. It may also be potentially useful in promoting the terminally arrested/differentiated state of tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Beijersbergen RL, Carlée L, Kerkhoven RM, Bernards R . 1995 Genes Dev. 9: 1340–1353

  • Brewer GJ . 1995 J. Neurosci. Res. 42: 674–683

  • Brook A, Xie JE, Du W, Dyson N . 1996 EMBO J. 15: 3676–3683

  • Buchkovich KJ, Ziff EB . 1994 Mol. Biol. Cell 5: 1225–1241

  • Callaghan DA, Dong L, Callaghan SM, Hou YX, Dagnino L, Slack RS . 1999 Dev. Biol. 207: 257–270

  • Cambray-Deakin MA . 1995 Neural Cell Culture: A Practical Approach. Cohen J and Wilkin GP (eds) Oxford University Press: New York pp. 3–13

  • Cartwright P, Muller H, Wagener C, Holm K, Helin K . 1998 Oncogene 17: 611–623

  • Cowley S, Paterson H, Kemp P, Marshall CJ . 1994 Cell 77: 841–852

  • Cui H, Bulleit RF . 1998 Brain Res. Dev. Brain Res. 106: 129–135

  • Dimri GP, Itahana K, Acosta M, Campisi J . 2000 Mol. Cell. Biol. 20: 273–285

  • Dirks PB, Rutka JT, Hubbard SL, Mondal S, Hamel PA . 1998 Oncogene 17: 867–876

  • Evan G, Littlewood T . 1998 Science 281: 1317–1322

  • Field SJ, Tsai F-Y, Kuo F, Zubiaga AM, Kaelin Jr WG, Livingston DM, Orkin SH, Greenberg ME . 1996 Cell 85: 549–561

  • Flemington EK, Speck SH, Kaelin Jr WG . 1993 Proc. Natl. Acad. Sci. USA 90: 6914–6918

  • Frade JM . 2000 J. Cell. Sci. 113: 1139–1148

  • Francesconi CM, Hutcheon AE, Chung EH, Dalbone AC, Joyce NC, Zieske JD . 2000 Invest Ophthalmol Vis Sci. 41: 1054–1062

  • Gaubatz S, Wood JG, Livingston DM . 1998 Proc. Natl. Acad. Sci. USA 95: 9190–9195

  • Gill RM, Hamel PA . 2000 J. Cell. Biol. 148: 1187–1201

  • Giovanni A, Keramaris E, Morris EJ, Hou ST, O'Hare M, Dyson N, Robertson GS, Slack RS, Park DS . 2000 J. Biol. Chem. 275: 11553–11560

  • Gollapudi L, Oblinger MM . 1999 J. Neurosci. Res. 56: 99–108

  • Greene LA, Tischler AS . 1976 Proc. Natl. Acad. Sci. USA 73: 2424–2428

  • Hansen LA, Sigman CC, Andreola F, Ross SA, Kelloff GJ, De Luca LM . 2000 Carcinogenesis 21: 1271–1279

  • Heibein JA, Barry M, Motyka B, Bleackley RC . 1999 J. Immunol. 163: 4683–4693

  • Kadonaga JT, Carner KR, Masiarz FR, Tjian R . 1987 Cell 51: 1079–1090

  • Kastner A, Espanel X, Brun G . 1998 Cell. Growth Differ. 9: 857–867

  • Kowalik TF, DeGregori J, Schwarz JK, Nevins JR . 1995 J. Virol. 69: 2491–2500

  • Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D . 1997 Proc. Natl. Acad. Sci. USA 94: 5095–5100

  • Lukas J, Petersen BO, Holm K, Bartek J, Helin K . 1996 Mol. Cell. Biol. 16: 1047–1057

  • MacManus JP, Koch CJ, Jian M, Walker T, Zurakowski B . 1999 Neuroreport 10: 2711–2714

  • Magae J, Wu C-L, Illenye S, Harlow E, Heintz NH . 1996 J. Cell. Sci. 109: 1717–1726

  • Mesner PW, Winters TR, Green SH . 1992 J. Cell. Biol. 119: 1669–1680

  • Muller H, Helin K . 2000 Biochim. Biophys. Acta. 1470: M1–M12

  • Myster DL, Bonnette PC, Duronio RJ . 2000 Development 127: 3249–3261

  • Nagy Z . 1999 J. Neural. Transm. Suppl. 57: 233–245

  • Nevins JR . 1998 Cell. Growth Differ. 9: 585–593

  • O'Hare MJ, Hou ST, Morris EJ, Cregan SP, Xu Q, Slack RS, Park DS . 2000 J. Biol. Chem. 275: 25358–25364

  • Okano HJ, Pfaff DW, Gibbis RB . 1993 J. Neurosci. 13: 2930–2938

  • Park DS, Morris EJ, Bremner R, Keramaris E, Padmanabhan J, Rosenbaum M, Shelanski ML, Geller HM, Greene LA . 2000 J. Neurosci. 20: 3104–3114

  • Persengiev SP, Kondova II, Kilpatrick DL . 1999 Mol. Cell. Biol. 19: 6048–6056

  • Persengiev SP, Kyurkchiev S . 1993 Int. J. Biochem. 25: 441–444

  • Raina AK, Zhu X, Rottkamp CA, Monteiro M, Takeda A, Smith MA . 2000 J. Neurosci. Res. 61: 128–133

  • Ross ME . 1996 Trends Neurosci. 19: 62–68

  • Slack RS, El-Bizri H, Wong J, Belliveau DJ, Miller FD . 1998 J. Cell. Biol. 140: 1497–1509

  • Suzuki A, Hemmati-Brivanlou A . 2000 Molecular Cell. 5: 217–229

  • Takahashi Y, Rayman JB, Dynlacht BD . 2000 Genes Dev. 14: 804–816

  • Trimarchi JM, Fairchild B, Verona R, Moberg K, Andon N, Lees JA . 1998 Proc. Natl. Acad. Sci. USA 95: 2850–2855

  • van Grunsven LA, Thomas A, Urdiales JL, Machenaud S, Choler P, Durand I, Rudkin BB . 1996 Oncogene 12: 855–862

  • Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA . 1997 Mol. Cell. Biol. 17: 7268–7282

  • Weintraub SJ, Chow KNB, Luo RX, Zhang SH, He S, Dean DC . 1995 Nature 375: 812–815

  • Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ . 1996 Cell. 85: 537–548

  • Yan G-Z, Ziff EB . 1995 J. Neurosci. 15: 6200–6212

  • Zhang HS, Postigo AA, Dean DC . 1999 Cell. 97: 53–61

Download references

Acknowledgements

This work was made possible by PHS grants DK36468 and CA-79999 as well as an Annual Research Award from the Worcester Foundation for Biomedical Research to DL Kilpatrick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L Kilpatrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persengiev, S., Li, J., Poulin, M. et al. E2F2 converts reversibly differentiated PC12 cells to an irreversible, neurotrophin-dependent state. Oncogene 20, 5124–5131 (2001). https://doi.org/10.1038/sj.onc.1204663

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204663

Keywords

This article is cited by

Search

Quick links