Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. original article
  4. article
Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2008

Antitumor Pharmacology

Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

  • Yan-min Zhao1,
  • Qian Zhou1,
  • Yun Xu1,
  • Xiao-yu Lai1 &
  • …
  • He Huang1 

Acta Pharmacologica Sinica volume 29, pages 481–488 (2008)Cite this article

  • 2736 Accesses

  • 30 Citations

  • Metrics details

Abstract

Aim:

To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat.

Methods:

Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progression and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR.

Results:

Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the protein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression.

Conclusion:

Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

Similar content being viewed by others

Teloxantron inhibits the processivity of telomerase with preferential DNA damage on telomeres

Article Open access 28 November 2022

Structure of active human telomerase with telomere shelterin protein TPP1

Article 13 April 2022

mTORC1-selective activation of translation elongation promotes disease progression in chronic lymphocytic leukemia

Article Open access 29 September 2023

Article PDF

References

  1. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . Mammalian TOR: a homeostatic AT P sensor. Science 2001; 294: 1102–5.

    CAS  PubMed  Google Scholar 

  2. Schmelzle T, Hall MN . TOR, a central controller of cell growth. Cell 2000; 103: 253–62.

    CAS  PubMed  Google Scholar 

  3. Panwalkar A, Verstovsek S, Giles FJ . Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 2004; 100: 657–66.

    CAS  PubMed  Google Scholar 

  4. Follo MY, Mongiorgi S, Bosi C, Cappellini A, Finelli C, Chiarini F . The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 2007; 67: 4287–94.

    CAS  PubMed  Google Scholar 

  5. Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S, et al. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leuke-mic cells. FASEB J 2005; 19: 960–2.

    CAS  PubMed  Google Scholar 

  6. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007; 14: 2009–23.

    CAS  PubMed  Google Scholar 

  7. Deville L, Hillion J, Lanotte M, Rousselot P, Segal Bendirdjian E. Diagnostics, prognostic and therapeutic exploitation of telomeres and telomerase in leukemias. Curr Pharm Biotechnol 2006; 7: 171–83.

    CAS  PubMed  Google Scholar 

  8. Kubuki Y, Suzuki M, Sasaki H, Toyama T, Yamashita K, Maeda K, et al. Telomerase activity and telomere length as prognostic factors of adult T-cell leukemia. Leuk Lymphoma 2005; 46: 393–9.

    CAS  PubMed  Google Scholar 

  9. Kang, SS, Kwon T, Kwon DY, Do SI . Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999; 274: 13085.

    CAS  PubMed  Google Scholar 

  10. Lei W, Liu F, Ness SA . Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1. Blood 2005; 105: 3855–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000; 60: 3504–13.

    CAS  PubMed  Google Scholar 

  12. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL . Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 1995; 377: 441–6.

    CAS  PubMed  Google Scholar 

  13. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G . Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 1997; 16: 3693–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kyo S, Kanaya T, Takakura M, Tanaka M, Inoue M . Human telomerase reverse transcriptase as a critical determinant of telomerase activity in normal and malignant endometrial tissues. Int J Cancer 1999; 80: 60–3.

    CAS  PubMed  Google Scholar 

  15. Gokbuget N, Hoelzer D . Recent approaches in acute lymphoblastic leukemia in adults. Rev Clin Exp Hematol 2002; 6: 114–41.

    PubMed  Google Scholar 

  16. West KA, Castillo SS, Dennis PA . Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resistance Updates 2002; 5: 234–48.

    CAS  PubMed  Google Scholar 

  17. Rowinsky EK . Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol 2004; 16: 564–75.

    CAS  PubMed  Google Scholar 

  18. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G . Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 817–21.

    Google Scholar 

  19. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30.

    CAS  PubMed  Google Scholar 

  20. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. Cloning of P27kip1, a cyclin-dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59–66.

    CAS  PubMed  Google Scholar 

  21. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    CAS  PubMed  Google Scholar 

  22. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–68.

    CAS  PubMed  Google Scholar 

  23. Hidalgo M, Rowinsky EK . The rapamycin-sensitive signal trans-duction pathway as a target for cancer therapy. Oncogene 2000; 19: 6680–6.

    CAS  PubMed  Google Scholar 

  24. Bae-Jump VL, Zhou C, Gehrig PA, Whang YE, Boggess J F . Rapamycin inhibits hTERT telomerase mRNA expression, independent of cell cycle arrest. Gynecol Oncol 2006; 100: 487–94.

    CAS  PubMed  Google Scholar 

  25. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, et al. The RNA component of human telomerase. Science 1995; 269: 1236–41.

    CAS  PubMed  Google Scholar 

  26. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–9.

    CAS  PubMed  Google Scholar 

  27. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–52.

    CAS  PubMed  Google Scholar 

  28. Stewart SA, Weinberg RA . Telomerase and human tumorigenesis. Semin Cancer Biol 2000; 10: 399–406.

    CAS  PubMed  Google Scholar 

  29. Cong YS, Wright WE, Shay JW . Human telomerase and its regulation. Microbiol Mol Biol Rev 2002; 66: 407–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002; 22: 7004–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruemmer D, Yin F, Liu J, Kiyono T, Fleck E, Va n Herle AJ, et al. R a pa mycin inhibits E2 F-dependent expression of minichromosome maintenance proteins in vascular smooth muscle cells. Biochem Biophys Res Commun 2003; 303: 251–8.

    CAS  PubMed  Google Scholar 

  32. Hay N, Sonenberg N . Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926–45.

    CAS  PubMed  Google Scholar 

  33. Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K . Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 2004; 24: 6076–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu X, Kumar R, Mandal M, Sharma N, Sharma HW, Dhingra U, et al. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc Natl Acad Sci USA 1996; 93: 6091–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee SH, Kim JW, Oh SH, Kim YJ, Rho SB, Park K, et al. IFN-gamma/IRF-1-induced p27kip1 down-regulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer. FEBS Lett 2005; 579: 1027–33.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Bone Marrow Transplant Center, The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China

    Yan-min Zhao, Qian Zhou, Yun Xu, Xiao-yu Lai & He Huang

Authors
  1. Yan-min Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Qian Zhou
    View author publications

    Search author on:PubMed Google Scholar

  3. Yun Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiao-yu Lai
    View author publications

    Search author on:PubMed Google Scholar

  5. He Huang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to He Huang.

Additional information

Project funded by grants from the Chinese 973 project (No 2002CB713700) and the National Natural Science Foundation of China (No 30570941).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Ym., Zhou, Q., Xu, Y. et al. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition. Acta Pharmacol Sin 29, 481–488 (2008). https://doi.org/10.1111/j.1745-7254.2008.00767.x

Download citation

  • Received: 05 October 2007

  • Accepted: 26 November 2007

  • Issue Date: 01 April 2008

  • DOI: https://doi.org/10.1111/j.1745-7254.2008.00767.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • acute lymphoblastic leukemia
  • telomerase
  • cell cycle
  • rapamycin

This article is cited by

  • Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA)

    • Jaber Haj Ali
    • Michael Walter

    Cancer Cell International (2023)

  • Effect of rapamycin treatment in human seminoma TCam-2 cells through inhibition of G1-S transition

    • Tugce Onel
    • Cihan S. Erdogan
    • Aylin Yaba

    Naunyn-Schmiedeberg's Archives of Pharmacology (2023)

  • MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells

    • Xian-bo Huang
    • Chun-mei Yang
    • Wen-bin Qian

    Acta Pharmacologica Sinica (2018)

  • Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential

    • L M Neri
    • A Cani
    • S Capitani

    Leukemia (2014)

  • Different responses of cell cycle between rat vascular smooth muscle cells and vascular endothelial cells to paclitaxel

    • Liang Jing
    • Xi Peng
    • Wei Wang

    Journal of Huazhong University of Science and Technology [Medical Sciences] (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Open Access Fees and Funding
  • Contact
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited