Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. original article
  4. article
Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 2008

Cellular and Molecular Pharmacology

Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway

  • Xian-bao Liu1,
  • Jun Jiang1,
  • Chun Gui1,
  • Xin-yang Hu2,
  • Mei-xiang Xiang1 &
  • …
  • Jian-an Wang1 

Acta Pharmacologica Sinica volume 29, pages 815–822 (2008)Cite this article

  • 2148 Accesses

  • 59 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Aim:

The angiopoietin-1 (Ang1)/Tie-2 signaling system not only plays a pivotal role in vessel growth, remodeling, and maturation, but also reduces apoptosis of endothelial cells, neurons, and cardiomyocytes. However, relatively little is known as to whether Ang1 has a protective effect on mesenchymal stem cells (MSC). The aim of the present study was to investigate the protective effect of Ang1/Tie-2 signaling on MSC against serum deprivation and hypoxia-induced apoptosis, and to determine the possible mechanisms.

Methods:

Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling staining were used to assess the apoptosis of MSC. The expression of Tie-2, Akt, Bcl-2, Bax, and cleaved caspase-9 and -3 was detected by Western blot analysis.

Results:

This study showed that MSC expressed Tie-2 receptor, and Ang1 induced Tie-2 receptor phosphorylation. The protective effect of Ang1 on MSC was dose-dependent and peaked at 50 μg/L; however, the soluble Tie-2/Fc fusion protein, which acts as an inhibitor by sequestering Ang1, abrogated the anti-apoptotic effect. Ang1 induced Akt phosphorylation, increased the Bcl-2/Bax ratio, and decreased the activation of caspase-9 and -3. All these effects were attenuated by Tie-2/Fc and a phosphatidylinositol 3 kinase (PI3K) inhibitor, wortmannin.

Conclusion:

These results demonstrate that Ang1 can protect MSC against serum deprivation and hypoxia-induced apoptosis; Ang1/Tie-2 signaling and its downstream PI3K/Akt messenger pathway are crucial in the processes leading to MSC survival.

Similar content being viewed by others

Sulfated glycans engage the Ang–Tie pathway to regulate vascular development

Article 05 October 2020

Akt1-dependent expression of angiopoietin 1 and 2 in vascular smooth muscle cells leads to vascular stabilization

Article Open access 05 August 2022

Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data

Article Open access 09 February 2021

Article PDF

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7.

    Article  CAS  Google Scholar 

  2. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–5.

    Article  CAS  Google Scholar 

  3. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141–8.

    Article  Google Scholar 

  4. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100: II247–56.

    Article  CAS  Google Scholar 

  5. Hu X, Wang J, Chen J, Luo R, He A, Xie X, et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 2007; 31: 438–43.

    Article  Google Scholar 

  6. Wang JA, Fan YQ, Li CL, He H, Sun Y, Lv BJ . Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function. J Zhejiang Univ Sci B 2005; 6: 242–8.

    Article  Google Scholar 

  7. Wang JA, Li CL, Fan YQ, He H, Sun Y . Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart. J Zhejiang Univ Sci 2004; 5: 1279–85.

    Article  Google Scholar 

  8. Kolossov E, Bostani T, Roell W, Breitbach M, Pillekamp F, Nygren JM, et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 2006; 203: 2315–27.

    Article  CAS  Google Scholar 

  9. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355: 1199–209.

    Article  CAS  Google Scholar 

  10. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD . Human mesenchymal stem cells differentiate to a cardiomyocyte phe-notype in the adult murine heart. Circulation 2002; 105: 93–8.

    Article  Google Scholar 

  11. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE . Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001; 33: 907–21.

    Article  CAS  Google Scholar 

  12. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–9.

    Article  CAS  Google Scholar 

  13. Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML . Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 7: 1471–80.

    CAS  PubMed  Google Scholar 

  14. Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G . Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 1993; 8: 1631–7.

    CAS  PubMed  Google Scholar 

  15. Thurston G . Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 2003; 314: 61–8.

    Article  CAS  Google Scholar 

  16. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC . Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213–23.

    CAS  PubMed  Google Scholar 

  17. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY . Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 1999; 448: 249–53.

    Article  CAS  Google Scholar 

  18. Valable S, Bellail A, Lesne S, Liot G, Mackenzie ET, Vivien D, et al. Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis. FASEB J 2003; 17: 443–5.

    Article  CAS  Google Scholar 

  19. Hashiramoto A, Sakai C, Yoshida K, Tsumiyama K, Miura Y, Shiozawa K, et al. Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt. Arthritis Rheum 2007; 56: 2170–9.

    Article  CAS  Google Scholar 

  20. Wang Z, Cui M, Sun L, Jia Z, Bai Y, Ma K, et al. Angiopoietin-1 protects H9c2 cells from H2O2-induced apoptosis through AKT signaling. Biochem Biophys Res Commun 2007; 359: 685–90.

    Article  CAS  Google Scholar 

  21. Xie XJ, Wang JA, Cao J, Zhang X . Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin 2006; 27: 1153–8.

    Article  CAS  Google Scholar 

  22. Zhu W, Chen J, Cong X, Hu S, Chen X . Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 2006; 24: 416–25.

    Article  Google Scholar 

  23. Perin EC, Geng YJ, Willerson JT . Adult stem cell therapy in perspective. Circulation 2003; 107: 935–8.

    Article  Google Scholar 

  24. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI . Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 2005; 46: 1339–50.

    Article  CAS  Google Scholar 

  25. Jiang S, Haider H, Idris NM, Salim A, Ashraf M . Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 2006; 99: 776–84.

    Article  CAS  Google Scholar 

  26. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9: 1195–201.

    Article  CAS  Google Scholar 

  27. Kaiser J . Clinical research. Death prompts a review of gene therapy vector. Science 2007; 317: 580.

    Article  CAS  Google Scholar 

  28. Kaiser J . Gene therapy. Side effects sideline hemophilia trial. Science 2004; 304: 1423–5.

    Article  CAS  Google Scholar 

  29. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY . Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res 2000; 86: 24–9.

    Article  CAS  Google Scholar 

  30. Fayard E, Tintignac LA, Baudry A, Hemmings BA . Protein kinase B/Akt at a glance. J Cell Sci 2005; 118: 5675–8.

    Article  CAS  Google Scholar 

  31. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–8.

    Article  CAS  Google Scholar 

  32. Green DR, Reed JC . Mitochondria and apoptosis. Science 1998; 281: 1309–12.

    Article  CAS  Google Scholar 

  33. Gross A, Jockel J, Wei MC, Korsmeyer SJ . Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–85.

    Article  CAS  Google Scholar 

  34. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–19.

    Article  CAS  Google Scholar 

  35. Yang E, Korsmeyer SJ . Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401.

    CAS  PubMed  Google Scholar 

  36. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 2006; 311: 847–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiology, Second affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China

    Xian-bao Liu, Jun Jiang, Chun Gui, Mei-xiang Xiang & Jian-an Wang

  2. Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China

    Xin-yang Hu

Authors
  1. Xian-bao Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Jun Jiang
    View author publications

    Search author on:PubMed Google Scholar

  3. Chun Gui
    View author publications

    Search author on:PubMed Google Scholar

  4. Xin-yang Hu
    View author publications

    Search author on:PubMed Google Scholar

  5. Mei-xiang Xiang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jian-an Wang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jian-an Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No 30670868) and the Natural Science Foundation of Zhejiang Province (No R206007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Xb., Jiang, J., Gui, C. et al. Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacol Sin 29, 815–822 (2008). https://doi.org/10.1111/j.1745-7254.2008.00811.x

Download citation

  • Received: 03 February 2008

  • Accepted: 22 April 2008

  • Issue Date: 01 July 2008

  • DOI: https://doi.org/10.1111/j.1745-7254.2008.00811.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • mesenchymal stem cells
  • angiopoietin-1
  • Tie-2 receptor
  • apoptosis

This article is cited by

  • Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential

    • Yang Liu
    • Lingjuan Wang
    • Kezhen Li

    Stem Cell Reviews and Reports (2024)

  • Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review

    • Kuishuai Xu
    • Liang Zhang
    • Tengbo Yu

    Stem Cell Research & Therapy (2023)

  • Iron depletion with deferoxamine protects bone marrow-derived mesenchymal stem cells against oxidative stress-induced apoptosis

    • Nasrin Khoshlahni
    • Mohsen Sagha
    • Mohammad Mohammadzadeh-Vardin

    Cell Stress and Chaperones (2020)

  • Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Overexpressing Lipocalin 2 Ameliorates Ischemia-Induced Injury and Reduces Apoptotic Death in a Rat Acute Myocardial Infarction Model

    • Zahra Alijani-Ghazyani
    • Reza Sabzevari
    • Mehryar Habibi Roudkenar

    Stem Cell Reviews and Reports (2020)

  • Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway

    • Jing-Yuan Li
    • Kang-Kang Ren
    • Hong-Bo Xin

    Stem Cell Research & Therapy (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Open Access Fees and Funding
  • Contact
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited