Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Losartan Improves the Impaired Function of Endothelial Progenitor Cells in Hypertension via an Antioxidant Effect
Download PDF
Download PDF
  • Original Article
  • Published: 01 November 2007

Losartan Improves the Impaired Function of Endothelial Progenitor Cells in Hypertension via an Antioxidant Effect

  • En-Hui Yao1,
  • Noboru Fukuda1,2,
  • Taro Matsumoto3,
  • Naohiko Kobayashi4,
  • Mayumi Katakawa1,
  • Chii Yamamoto1,
  • Akiko Tsunemi1,
  • Ryo Suzuki1,
  • Takahiro Ueno1 &
  • …
  • Koichi Matsumoto1 

Hypertension Research volume 30, pages 1119–1128 (2007)Cite this article

  • 1931 Accesses

  • Metrics details

Abstract

We evaluated the effects of the angiotensin II (Ang II) receptor blocker (ARB) losartan on the formation and number of endothelial progenitor cells (EPCs) in hypertensive rats. Wistar-Kyoto (WKY) rats and stroke-prone, spontaneously hypertensive rats (SHR-SP) were salt-loaded and then treated with losartan (10 mg/kg/day), trichlormethiazide (TCM; 1.6 mg/kg/day), or tempol (1 mmol/L) for 2 weeks. Peripheral blood mononuclear cells were isolated, subjected to flow cytometric analysis to determine the number of circulating EPCs, cultured to assay EPC colony formation, and subjected to a migration chamber assay to evaluate EPC migration. Oxidative stress in EPCs was evaluated by thiobarbituric acid reactive substance (TBARS) assay. The results showed that the number, colony formation, and migration of EPCs were markedly decreased in SHR-SP compared to those in WKY rats. The TBARS scores were significantly greater in SHR-SP than in WKY rats. Losartan and TCM decreased systolic blood pressure in SHR-SP to similar levels. Losartan and tempol increased the number of circulating EPCs and colony formation, and inhibited oxidation in SHR-SP. TCM did not affect the EPC number, colony formation, or oxidation. Both losartan and TCM stimulated EPC migration. Expression of gp91phox, p22phox, and p47phox mRNA in tissues was significantly decreased by losartan but not by TCM. These results indicate that the formation and function of EPCs are impaired by oxidative stress in SHR-SP. This is the first report to show that losartan improves the proliferation and function of EPCs in hypertension, suggesting that ARBs are useful to repair hypertensive vascular injuries.

Similar content being viewed by others

Identification of potential biomarkers for hypertension based on transcriptomic analysis in rats

Article 16 April 2025

Both central sympathoexcitation and peripheral angiotensin II-dependent vasoconstriction contribute to hypertension development in immature heterozygous Ren-2 transgenic rats

Article 08 October 2021

The glymphatic system was impaired in spontaneously hypertensive rats

Article Open access 26 May 2025

Article PDF

References

  1. Li PG, Xu JW, Ikeda K, et al: Caffeic acid inhibits vascular smooth muscle cell proliferation induced by angiotensin II in stroke-prone spontaneously hypertensive rats. Hypertens Res 2005; 28: 369–377.

    Article  PubMed  Google Scholar 

  2. Brassard P, Amiri F, Schiffrin EL : Combined angiotensin II type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension 2005; 46: 598–606.

    Article  CAS  PubMed  Google Scholar 

  3. Toba H, Shimizu T, Miki S, et al: Calcium channel blockers reduce angiotensin II–induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells. Hypertens Res 2006; 29: 105–116.

    Article  CAS  PubMed  Google Scholar 

  4. Touyz RM : Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 2004; 44: 248–252.

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T, Murohara T, Sullivan A, et al: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  PubMed  Google Scholar 

  6. Shi Q, Rafii S, Wu MH, et al: Evidence for circulating bone marrow–derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  7. Folkman J : Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi T, Kalka C, Masuda H, et al: Ischemia- and cytokine-induced mobilization of bone marrow–derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    Article  CAS  PubMed  Google Scholar 

  9. Asahara T, Masuda H, Takahashi T, et al: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–228.

    Article  CAS  PubMed  Google Scholar 

  10. Hill JM, Zalos G, Halcox JP, et al: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    Article  PubMed  Google Scholar 

  11. Vasa M, Fichtlscherer S, Aicher A, et al: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89: E1–E7.

    Article  CAS  PubMed  Google Scholar 

  12. Choi JH, Kim KL, Huh W, et al: Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 2004; 24: 1246–1252.

    Article  CAS  PubMed  Google Scholar 

  13. Eizawa T, Ikeda U, Murakami Y, et al: Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 2004; 90: 685–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heeschen C, Lehmann R, Honold J, et al: Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109: 1615–1622.

    Article  PubMed  Google Scholar 

  15. Grisar J, Aletaha D, Steiner CW, et al: Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 2005; 111: 204–211.

    Article  PubMed  Google Scholar 

  16. Balin AK, Fisher AJ, Anzelone M, Leong I, Allen RG : Effects of establishing cell cultures and cell culture conditions on the proliferative life span of human fibroblasts isolated from different tissues and donors of different ages. Exp Cell Res 2002; 274: 275–287.

    Article  CAS  PubMed  Google Scholar 

  17. Walter DH, Rittig K, Bahlmann FH, et al: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow–derived endothelial progenitor cells. Circulation 2002; 105: 3017–3024.

    Article  CAS  PubMed  Google Scholar 

  18. Shintani S, Murohara T, Ikeda H, et al: Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  19. Morii T, Nishikawa K, Shimoyama T, et al: Quantitative flow-cytometric analysis of CD34-positive stem cells in peripheral blood stem cell harvests. Jpn J Clin Hematol 1994; 35: 649–656.

    CAS  Google Scholar 

  20. Yamaguchi J, Kusano KF, Masuo O, et al: Stromal cell–derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003; 107: 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  21. Asahara T, Takahashi T, Masuda H, et al: VEGF contributes to postnatal neovascularization by mobilizing bone marrow–derived endothelial progenitor cells. EMBO J 1999; 18: 3964–3972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitiyakara C, Chabrashvili T, Chen Y, et al: Salt intake, oxidative stress, and renal expression of NAD(P)H oxidase and superoxide dismutase. J Am Soc Nephrol 2003; 14: 2775–2782.

    Article  CAS  PubMed  Google Scholar 

  23. Tahira Y, Fukuda N, Endo M, et al: Transforming growth factor-beta expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 2002; 25: 911–918.

    Article  CAS  PubMed  Google Scholar 

  24. Winer J, Jung CK, Shackel I, Williams PM : Development and validation of real-time quantitative reverse transcriptase–polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 1999; 270: 41–49.

    Article  CAS  PubMed  Google Scholar 

  25. Moriki N, Ito M, Seko T, et al: RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  26. Negishi H, Ikeda K, Sagara M, Sawamura M, Yamori Y : Increased oxidative DNA damage in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1999; 26: 482–484.

    Article  CAS  PubMed  Google Scholar 

  27. Lee MC, Shoji H, Miyazaki H, et al: Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-band ESR. Hypertens Res 2004; 27: 485–492.

    Article  CAS  PubMed  Google Scholar 

  28. Rajagopalan S, Kurz S, Munzel T, et al: Angiotensin II–mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NAD(P)H oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lassegue B, Clempus RE : Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285: R277–R297.

    Article  CAS  PubMed  Google Scholar 

  30. Griendling KK, Sorescu D, Ushio-Fukai M : NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501.

    Article  CAS  PubMed  Google Scholar 

  31. Taniyama Y, Griendling KK : Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton CA, Miller WH, Al-Benna S, et al: Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 2004; 106: 219–234.

    Article  CAS  Google Scholar 

  33. Imanishi T, Moriwaki C, Hano T, Nishio I : Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005; 23: 1831–1837.

    Article  CAS  PubMed  Google Scholar 

  34. Imanishi T, Hano T, Nishio I : Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 2005; 23: 97–104.

    Article  CAS  PubMed  Google Scholar 

  35. Britten MB, Abolmaali ND, Assmus B, et al: Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108: 2212–2218.

    Article  CAS  PubMed  Google Scholar 

  36. Imanishi T, Hano T, Sawamura T, Nishio I : Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol 2004; 31: 407–413.

    Article  CAS  PubMed  Google Scholar 

  37. Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S : Antioxidative stress–associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 2004; 104: 3591–3597.

    Article  CAS  PubMed  Google Scholar 

  38. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR : A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  PubMed  Google Scholar 

  39. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA : “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600.

    Article  CAS  PubMed  Google Scholar 

  40. Noble M, Smith J, Power J, Mayer-Proschel M : Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci 2003; 991: 251–271.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi K, Imanishi T, Akasaka T : Endothelial progenitor cell differentiation and senescence in an angiotensin II–infusion rat model. Hypertens Res 2006; 29: 449–455.

    Article  CAS  PubMed  Google Scholar 

  42. Serrano AL, Andres V : Telomeres and cardiovascular disease: does size matter? Circ Res 2004; 94: 575–584.

    Article  CAS  PubMed  Google Scholar 

  43. Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D : Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 2005; 45: 526–529.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Nephrology and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan

    En-Hui Yao, Noboru Fukuda, Mayumi Katakawa, Chii Yamamoto, Akiko Tsunemi, Ryo Suzuki, Takahiro Ueno & Koichi Matsumoto

  2. Advanced Research Institute of Science and Humanities, Tokyo, Japan

    Noboru Fukuda

  3. Division of Cell Regeneration and Transplantation, Department of Advanced Medicine, Nihon University School of Medicine, Tokyo, Japan

    Taro Matsumoto

  4. Department of Cardiovascular Medicine, Dokkyo University School of Medicine, Tochigi, Japan

    Naohiko Kobayashi

Authors
  1. En-Hui Yao
    View author publications

    Search author on:PubMed Google Scholar

  2. Noboru Fukuda
    View author publications

    Search author on:PubMed Google Scholar

  3. Taro Matsumoto
    View author publications

    Search author on:PubMed Google Scholar

  4. Naohiko Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  5. Mayumi Katakawa
    View author publications

    Search author on:PubMed Google Scholar

  6. Chii Yamamoto
    View author publications

    Search author on:PubMed Google Scholar

  7. Akiko Tsunemi
    View author publications

    Search author on:PubMed Google Scholar

  8. Ryo Suzuki
    View author publications

    Search author on:PubMed Google Scholar

  9. Takahiro Ueno
    View author publications

    Search author on:PubMed Google Scholar

  10. Koichi Matsumoto
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Noboru Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, EH., Fukuda, N., Matsumoto, T. et al. Losartan Improves the Impaired Function of Endothelial Progenitor Cells in Hypertension via an Antioxidant Effect. Hypertens Res 30, 1119–1128 (2007). https://doi.org/10.1291/hypres.30.1119

Download citation

  • Received: 09 March 2007

  • Accepted: 06 June 2007

  • Issue Date: 01 November 2007

  • DOI: https://doi.org/10.1291/hypres.30.1119

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin II receptor antagonist
  • endothelial progenitor cell
  • oxidative stress
  • hypertension

This article is cited by

  • Evaluation of the protective effect of losartan in acetaminophen-induced liver and kidney damage in mice

    • Serkan Şahin
    • Ayça Çakmak Aydın
    • Emin Kaymak

    Naunyn-Schmiedeberg's Archives of Pharmacology (2024)

  • Diverse associations between oxidative stress and thromboxane A2 in hypertensive glomerular injury

    • Yukihito Nakano
    • Yoshihisa Nakatani
    • Shuji Arima

    Hypertension Research (2019)

  • Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats

    • Mayumi Katakawa
    • Noboru Fukuda
    • Yukio Yamori

    Hypertension Research (2016)

  • Short-term use of telmisartan attenuates oxidation and improves Prdx2 expression more than antioxidant β-blockers in the cardiovascular systems of spontaneously hypertensive rats

    • Sae Mi Yoo
    • Sung Hyun Choi
    • Sang Hong Baek

    Hypertension Research (2015)

  • Expanded roles of the renin–angiotensin system

    • Daiju Fukuda
    • Masataka Sata

    Hypertension Research (2013)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited