Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Cardiovascular Remodeling and Metabolic Abnormalities in SHRSP.Z-Leprfa/IzmDmcr Rats as a New Model of Metabolic Syndrome
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 2008

Cardiovascular Remodeling and Metabolic Abnormalities in SHRSP.Z-Leprfa/IzmDmcr Rats as a New Model of Metabolic Syndrome

  • Takahiro Ueno1,
  • Hiroto Takagi1,
  • Noboru Fukuda1,2,
  • Atsuhiko Takahashi3,
  • En-Hui Yao1,
  • Masako Mitsumata4,
  • Junko Hiraoka-Yamamoto5,
  • Katsumi Ikeda5,
  • Koichi Matsumoto1 &
  • …
  • Yukio Yamori6 

Hypertension Research volume 31, pages 1021–1031 (2008)Cite this article

  • 1811 Accesses

  • Metrics details

Abstract

The purpose of this study was to evaluate whether the spontaneously hypertensive rat SHRSP.Z-Leprfa/IzmDmcr (SHRSP fatty) is a useful animal model to clarify molecular mechanisms that underlie metabolic syndrome. We investigated histopathologic changes in the cardiovascular organs and metabolic characteristics of SHRSP fatty rats, which are congenic rats from a cross between SHRSP and Zucker fatty (ZF) rats. The aortic wall and cardiac, carotid, and renal arteries from SHRSP and SHRSP fatty rats were thicker than those of ZF rats. The renal cortex in SHRSP and SHRSP fatty rats showed severe glomerulosclerosis. Pancreatic islands in SHRSP fatty and ZF rats showed marked hyperplasia. Steady-state plasma glucose concentrations were higher in SHRSP fatty than in ZF rats. Non-fasting triglyceride levels in SHRSP fatty rats were higher than in ZF rats. DNA synthesis in cultured vascular smooth muscle cells (VSMCs) from SHRSP fatty and SHRSP rats was significantly higher than that in VSMCs from Wistar-Kyoto (WKY) or ZF rats. Levels of platelet-derived growth factor A-chain and transforming growth factor-β1 mRNAs were higher in VSMCs from SHRSP fatty and SHRSP than from ZF rats. Microarray analysis identified five genes that were significantly upregulated and four genes that were significantly downregulated in visceral adipose tissue of SHRSP fatty rats compared with levels in control strains (SHRSP and ZF rats). These findings suggest that the combination of hypertension and obesity accelerates vascular remodeling, dyslipidemia, and insulin resistance in metabolic syndrome. The phenotype of SHRSP fatty is similar to that of human metabolic syndrome, and therefore, studies of these rats may help clarify the molecular mechanisms that underlie metabolic syndrome in humans.

Similar content being viewed by others

Role of trans-resveratrol in ameliorating biochemical and molecular alterations in obese rats induced by a high fructose/fat diet

Article Open access 06 March 2025

Sympathetic nervous system inhibition enhances cardiac metabolism and improves hemodynamics and glucose-insulin dynamics in obese and lean rat models

Article Open access 02 January 2025

Identification of potential biomarkers for hypertension based on transcriptomic analysis in rats

Article 16 April 2025

Article PDF

References

  1. Landsberg L : Insulin resistance and hypertension. Clin Exp Hypertens 1999; 21: 885–894.

    Article  CAS  PubMed  Google Scholar 

  2. Rett K : The relation between insulin resistance and cardiovascular complications of the insulin resistance syndrome. Diabetes Obes Metab 1999; 1 ( Suppl 1): S8–S16.

    Article  CAS  PubMed  Google Scholar 

  3. Matsuzawa Y, Funahashi T, Nakamura T : Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 1999; 892: 146–154.

    Article  CAS  PubMed  Google Scholar 

  4. Eschwege E : The dysmetabolic syndrome, insulin resistance and increased cardiovascular (CV) morbidity and mortality in type 2 diabetes: aetiological factors in the development of CV complications. Diabetes Metab 2003; 29: 6 S19–6S27.

    Article  Google Scholar 

  5. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM : Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369: 1208–1219.

    Article  CAS  PubMed  Google Scholar 

  6. Hiraoka-Yamamoto J, Nara Y, Yasui N, Onobayashi Y, Tsuchikura S, Ikeda K : Establishment of a new animal model of metabolic syndrome: SHRSP fatty (fa/fa) rats. Clin Exp Pharmacol Physiol 2004; 31: 107–109.

    Article  CAS  PubMed  Google Scholar 

  7. Raij L, Azar S, Keane W : Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats. Kidney Int 1984; 26: 137–143.

    Article  CAS  PubMed  Google Scholar 

  8. Qian X, Jin L, Grande JP, Lloyd RV : Transforming growth factor-beta and p27 expression in pituitary cells. Endocrinology 1996; 137: 3051–3060.

    Article  CAS  PubMed  Google Scholar 

  9. Fukuda N, Kishioka H, Satoh C, et al: Role of long-form PDGF A-chain in the growth of vascular smooth muscle cells from spontaneously hypertensive rats. Am J Hypertens 1997; 10: 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  10. el-Husseini AE, Paterson JA, Myal Y, Shiu RP : PCR detection of the rat brain basic fibroblast growth factor (bFGF) mRNA containing a unique 3′ untranslated region. Biochim Biophys Acta 1992; 1131: 314–316.

    Article  CAS  PubMed  Google Scholar 

  11. Hoof T, Riordan JR, Tummler B : Quantitation of mRNA by the kinetic polymerase chain reaction assay: a tool for monitoring P-glycoprotein gene expression. Anal Biochem 1991; 196: 161–169.

    Article  CAS  PubMed  Google Scholar 

  12. Baumbach GL, Walmsley JG, Hart MN : Composition and mechanics of cerebral arterioles in hypertensive rats. Am J Pathol 1988; 133: 464–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogata J, Fujishima M, Tamaki K, Nakatomi Y, Ishitsuka T, Omae T : Stroke-prone spontaneously hypertensive rats as an experimental model of malignant hypertension. I. A light- and electron-microscopic study of the brain. Acta Neuropathol (Berl) 1980; 51: 179–184.

    Article  CAS  Google Scholar 

  14. Takaya K, Ogawa Y, Isse N, et al: Molecular cloning of rat leptin receptor isoform complementary DNAs—identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 1996; 225: 75–83.

    Article  CAS  PubMed  Google Scholar 

  15. Zucker TF, Zucker LM : Fat accretion and growth in the rat. Obes Res 1996; 4: 102–108.

    Article  CAS  PubMed  Google Scholar 

  16. Larsson LI, Boder GB, Shaw WN : Changes in the islets of langerhans in the obese Zucker rat. Lab Invest 1977; 36: 593–598.

    CAS  PubMed  Google Scholar 

  17. Milburn JL Jr, Hirose H, Lee YH, et al: Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem 1995; 270: 1295–1299.

    Article  CAS  PubMed  Google Scholar 

  18. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP : Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 1997; 100: 2158–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR : Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 1996; 93: 12490–12495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukuda N, Hu WY, Teng J, et al: Troglitazone inhibits growth and improves insulin signaling by suppression of angiotensin II action in vascular smooth muscle cells from spontaneously hypertensive rats. Atherosclerosis 2002; 163: 229–239.

    Article  CAS  PubMed  Google Scholar 

  21. Fukuda N, Satoh C, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K : Endogenous angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 2001; 19: 1651–1658.

    Article  CAS  PubMed  Google Scholar 

  22. Higashiura K, Ura N, Miyazaki Y, Shimamoto K : Effect of an angiotensin II receptor antagonist, candesartan, on insulin resistance and pressor mechanisms in essential hypertension. J Hum Hypertens 1999; 13 ( Suppl 1): S71–S74.

    Article  CAS  PubMed  Google Scholar 

  23. Shimamoto K, Ura N, Nakagawa M, et al: The mechanisms of the improvement of insulin sensitivity by angiotensin converting enzyme inhibitor. Clin Exp Hypertens 1996; 18: 257–266.

    Article  CAS  PubMed  Google Scholar 

  24. Bahadir O, Aydin S, Caylan R : The effect on the middle-ear cavity of an absorbable gelatine sponge alone and with corticosteroids. Eur Arch Otorhinolaryngol 2003; 260: 19–23.

    Article  PubMed  Google Scholar 

  25. Yamaguchi K, Ura N, Murakami H, et al: Olmesartan ameliorates insulin sensitivity by modulating tumor necrosis factor-alpha and cyclic AMP in skeletal muscle. Hypertens Res 2005; 28: 773–778.

    Article  CAS  PubMed  Google Scholar 

  26. Fukuda N, Nakayama M, Jian T, et al: Leukocyte angiotensin II levels inpatients with essential hypertension: relation to insulin resistance. Am J Hypertens 2003; 16: 129–134.

    Article  CAS  PubMed  Google Scholar 

  27. Cai H, Li Z, Dikalov S, et al: NAD(P)H oxidase−derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 2002; 277: 48311–48317.

    Article  CAS  PubMed  Google Scholar 

  28. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW : Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  29. Moriki N, Ito M, Seko T, et al: RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  30. Negishi H, Ikeda K, Sagara M, Sawamura M, Yamori Y : Increased oxidative DNA damage in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1999; 26: 482–484.

    Article  CAS  PubMed  Google Scholar 

  31. Mark AL, Shaffer RA, Correia ML, Morgan DA, Sigmund CD, Haynes WG : Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J Hypertens 1999; 17: 1949–1953.

    Article  CAS  PubMed  Google Scholar 

  32. Verma S, Leung YM, Yao L, Battell M, Dumont AS, McNeill JH : Hyperinsulinemia superimposed on insulin resistance does not elevate blood pressure. Am J Hypertens 2001; 14: 429–432.

    Article  CAS  PubMed  Google Scholar 

  33. Fukuda N, Hu WY, Satoh C, et al: Contribution of synthetic phenotype on the enhanced angiotensin II−generating system in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 1999; 17: 1099–1107.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda N, Satoh C, Hu WY, et al: Production of angiotensin II by homogeneous cultures of vascular smooth muscle cells from spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 1999; 19: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  35. Hu WY, Fukuda N, Kanmatsuse K : Growth characteristics, angiotensin II generation, and microarray-determined gene expression in vascular smooth muscle cells from young spontaneously hypertensive rats. J Hypertens 2002; 20: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  36. Hu WY, Fukuda N, Satoh C, et al: Phenotypic modulation by fibronectin enhances the angiotensin II−generating system in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20: 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  37. Satoh C, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K : Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2001; 37: 108–118.

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez S, Gaunt TR, Day IN : Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 2007; 122: 1–21.

    Article  CAS  PubMed  Google Scholar 

  39. Beattie JH, Wood AM, Newman AM, et al: Obesity and hyperleptinemia in metallothionein (-I and -II) null mice. Proc Natl Acad Sci U S A 1998; 95: 358–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H : Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res 2000; 7: 111–120.

    Article  CAS  PubMed  Google Scholar 

  41. Calabrese V, Boyd-Kimball D, Scapagnini G, Butterfield DA : Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo (Athens, Greece) 2004; 18: 245–267.

    CAS  Google Scholar 

  42. Katzmarzyk PT, Rankinen T, Perusse L, et al: Linkage and association of the sodium potassium-adenosine triphosphatase alpha2 and beta1 genes with respiratory quotient and resting metabolic rate in the Quebec Family Study. J Clin Endocrinol Metab 1999; 84: 2093–2097.

    CAS  PubMed  Google Scholar 

  43. Adachi T, Ohta H, Yamada H, Futenma A, Kato K, Hirano K : Quantitative analysis of extracellular-superoxide dismutase in serum and urine by ELISA with monoclonal antibody. Clin Chim Acta 1992; 212: 89–102.

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC : A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 1999; 19: 1262–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blachly-Dyson E, Zambronicz EB, Yu WH, et al: Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem 1993; 268: 1835–1841.

    CAS  PubMed  Google Scholar 

  46. Huq AH, Lovell RS, Ou CN, Beaudet AL, Craigen WJ : X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum Mol Genet 1997; 6: 1803–1809.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Nephrology and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan

    Takahiro Ueno, Hiroto Takagi, Noboru Fukuda, En-Hui Yao & Koichi Matsumoto

  2. Advanced Research Institute of Science and Humanities, Nihon University Graduate School, Tokyo, Japan

    Noboru Fukuda

  3. Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan

    Atsuhiko Takahashi

  4. Department of Pathology, Nihon University School of Medicine, Tokyo, Japan

    Masako Mitsumata

  5. Frontier Health Science Forum, Mukogawa Women’s University, Nishinomiya, Japan

    Junko Hiraoka-Yamamoto & Katsumi Ikeda

  6. WHO Collaborating Center for Research on Primary Prevention of Cardiovascular Diseases, Kyoto, Japan

    Yukio Yamori

Authors
  1. Takahiro Ueno
    View author publications

    Search author on:PubMed Google Scholar

  2. Hiroto Takagi
    View author publications

    Search author on:PubMed Google Scholar

  3. Noboru Fukuda
    View author publications

    Search author on:PubMed Google Scholar

  4. Atsuhiko Takahashi
    View author publications

    Search author on:PubMed Google Scholar

  5. En-Hui Yao
    View author publications

    Search author on:PubMed Google Scholar

  6. Masako Mitsumata
    View author publications

    Search author on:PubMed Google Scholar

  7. Junko Hiraoka-Yamamoto
    View author publications

    Search author on:PubMed Google Scholar

  8. Katsumi Ikeda
    View author publications

    Search author on:PubMed Google Scholar

  9. Koichi Matsumoto
    View author publications

    Search author on:PubMed Google Scholar

  10. Yukio Yamori
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Noboru Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, T., Takagi, H., Fukuda, N. et al. Cardiovascular Remodeling and Metabolic Abnormalities in SHRSP.Z-Leprfa/IzmDmcr Rats as a New Model of Metabolic Syndrome. Hypertens Res 31, 1021–1031 (2008). https://doi.org/10.1291/hypres.31.1021

Download citation

  • Received: 14 September 2007

  • Accepted: 19 December 2007

  • Issue Date: 01 May 2008

  • DOI: https://doi.org/10.1291/hypres.31.1021

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • metabolic syndrome
  • hypertension
  • insulin resistance
  • hyperlipidemia
  • congenic rat

This article is cited by

  • Angiotensin II Type 1 Receptor Antagonist Azilsartan Restores Vascular Reactivity Through a Perivascular Adipose Tissue-Independent Mechanism in Rats with Metabolic Syndrome

    • Satomi Kagota
    • Kana Maruyama-Fumoto
    • Kazumasa Shinozuka

    Cardiovascular Drugs and Therapy (2019)

  • Renoprotective mechanisms of telmisartan on renal injury and inflammation in SHRSP.Z-Leprfa/IzmDmcr rats

    • Fumihiro Sugiyama
    • Naohiko Kobayashi
    • Toshihiko Ishimitsu

    Clinical and Experimental Nephrology (2013)

  • Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP.Z-Leprfa/Izm rats

    • Hisae Yoshitomi
    • Xiangyu Guo
    • Ming Gao

    Nutrition & Metabolism (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited