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Evaluation of a two-step iterative resampling procedure
for internal validation of genome-wide association
studies

Guolian Kang1, Wei Liu1, Cheng Cheng1, Carmen L Wilson2, Geoffrey Neale3, Jun J Yang4, Kirsten K Ness2,
Leslie L Robison2, Melissa M Hudson2 and Deo Kumar Srivastava1

Genome-wide association studies (GWAS) have successfully identified many common genetic variants associated with complex

diseases over the past decade. The ‘gold standard’ method for validating the top single nucleotide polymorphisms (SNPs)

identified in GWAS is to independently replicate the findings in similar or diverse large-scale external cohorts. However, for rare

diseases, it can be difficult to find an external validation cohort within a reasonable timeframe. In such situations, resampling

methods, such as the two-step iterative resampling (TSIR) approach have been used to identify SNPs associated with the

outcome of interest. However, the TSIR approach involves choosing several parameters in each step, which can influence the

performance of the approach. In this paper, we undertook extensive simulation studies to assess the effect of choice of different

parameters on the type I error and power for both binary and continuous phenotypes and also compared the TSIR approach with

the traditional one-stage (OS) and two-stage (TS) GWAS analysis. We illustrate the usefulness of the TSIR approach by applying

it to a GWAS of childhood cancer survivors. Our results indicate that the TSIR approach with an at least 70:30 split and a cutoff

of discovering and replicating SNPs at least 20 times in 100 replications provides conservative type I error control and has near

‘optimal’ power for internally validated SNPs. Its performance is comparable with the TS GWAS for which an external validation

cohort is available with only slight reduction in power in some situations. It has almost the same power as OS GWAS with

conservative type I error which leads to fewer false positive findings. TSIR is a powerful and efficient method for identifying and

internally validating SNPs for GWAS when independent cohorts for external validation may not be available.
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INTRODUCTION

Under the common disease common variants hypothesis, genome-
wide association studies (GWAS) have successfully identified associa-
tions between common genetic variants, such as single nucleotide
polymorphisms (SNPs) with complex diseases.1–3 A two-stage (TS)4 or
multiple-stage design5,6 has been commonly applied to design GWAS
to detect SNPs associated with complex diseases. For the TS design,
the whole cohort is divided into discovery and replication/validation
cohorts. In Stage I, the top signals/SNPs are identified in the discovery
cohort using well-defined a priori criterion that are then replicated/
validated in Stage II using an ‘independent’ replication cohort, that is,
independent of the discovery cohort. For multiple-stage designs with
more than two stages, after the first stage, Stages II and beyond are
usually used to validate the top most significant markers for down-
stream analyses.
In GWAS involving rare diseases or outcomes in pediatric cancers,

we often aim to identify biologic markers that can predict treatment
outcomes, help explain treatment-related toxicities or help us

understand the effects of treatment modalities on different subtypes
of disease. Because these diseases are rare, some with prevalence rates
of 1 per million, for example, retinoblastoma and Ewing’s Sarcoma,7,8

it may not be possible to find an external cohort to validate the top
SNPs within a reasonable timeframe. Even when disease outcomes are
not rare, it can also be hard to find a suitable external validation
cohort. An example is the evaluation of genetic predictors of clinically
ascertained outcomes in the SJLIFE cohort,9 a study among childhood
cancer survivors treated at St. Jude Children’s Research Hospital
(SJCRH), who have survived 10 or more years from diagnosis and are
at least 18 years of age. Because this study includes the largest cohort of
childhood cancer survivors with prospective medical/clinical evaluation
of health outcomes, it is extremely hard to find another cohort that has
similarly ascertained health phenotypes.10 In such situations, it is
imperative that an innovative and robust internal validation approach
is undertaken to validate the top SNPs identified through GWAS.10,11

The current research was motivated by a study within the SJLIFE
cohort designed to identify the SNPs associated with the obesity
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phenotype (evaluated as a binary outcome measure) in survivors of
childhood cancer treated with cranial radiation for which an external
cohort to validate our findings was not available.10 Thus, we
considered an internal validation approach, namely the two-step
iterative re-sampling (TSIR) approach, used by Yang et al.11 for
identifying SNPs associated with the risk of relapse in children treated
for acute lymphoblastic leukemia. An alternative approach would be to
use a permutation approach,12,13 which is particularly suited to
situations where the prevalence of the binary outcome is low and
the number of cases is small. Another permutation-based internal
validation approach is the ‘profile significance’,14 particularly suited for
situations where the global level of association between genomic
features may be of interest. For large sample sizes, these approaches
can be computationally intensive and time consuming. The focus of
this manuscript is to describe the operating characteristics of the TSIR
approach.
The TSIR approach used by Yang et al.11 can roughly be described

as follows. The original cohort is split, using a π : (1-π) ratio, with
π= 0.5, into discovery and replication cohorts. Using the discovery
cohort, SNPs are individually tested for association with the outcome
using Fine and Gray’s hazard regression model. All SNPs that are
significant at α1 (4.4× 10− 3) are carried forward to the replication
step. A SNP identified in the discovery cohort is considered to be
replicated if the same SNP is associated with the outcome in the
replication step at α2 (= 0.05) significance level. This discovery-
replication process is repeated 100 times and a particular SNP is
designated as ‘associated’ or ‘internally validated’ with the outcome if
it is discovered/replicated at least 10 times.
In the approach described by Yang et al.,11 there was no rationale or

statistical justification provided for the following: (i) rationale for the
50:50 split of the original cohort into discovery and replication
cohorts, (ii) the choice of α1= 4.4 × 10− 3 with α2 is fixed at level
0.05 (α2 = 0.05), and (iii) a cutoff of 10 in the discovery-replication
process. We were interested in assessing how the various choices in
(i)–(iii) above affect the statistical properties of the TSIR approach,
how the TSIR approach performs for continuous and binary out-
comes, and finally how the performance of TSIR approach compares
with the one-stage (OS) and TS GWAS analysis?
The research presented here, supported by extensive simulation

studies, is designed to guide researchers to use the appropriate choice
of parameters when using the TSIR approach for their genomics
research involving GWAS when external validation cohorts are not
available. The usefulness of the TSIR approach is further demonstrated
by applying it to data reported by Wilson et al.10

METHODS

Two-step iterative resampling (TSIR) procedure
The TSIR described by Yang et al.11 was used in the context of survival data.
However, in the current analysis, we were interested in binary as well as
continuous phenotypes. Accordingly, we discuss the evaluation of binary and
continuous end points in parallel.
We assume that, for GWAS in a OS design, there are N0 controls and N1

cases in a case–control genetic association study (total sample size N = N0+N1)
or N individuals in a genetic association study of a continuous phenotype and
that the SNP of interest is biallelic. The two alleles at a SNP are denoted as A
and a, where A is the minor allele and the three genotypes are AA, Aa and aa.
Suppose that observations (si, Xi, Gi), i = 1, 2, … N, are available for N
individuals, si is the indicator of case–control status or the quantitative value of
the continuous phenotype of the subject i; Xi = [xi1, xi2, …, xim]

T is the vector
of m covariates to be included in the model (for example, demographic or
clinical variables); and Gi = 0, 1 or 2 is the numerical coding of the three
genotypes aa, Aa or AA of the SNP for an individual.

For the TSIR approach, the original cohort is randomly split into discovery
and replication set by the ratio π:(1-π). A SNP is considered discovered and
replicated if its association testing P-values are statistically significant at levels α1
and α2 in the discovery and replication steps, respectively (Figure 1). This
process is repeated n= 100 times and a SNP is considered to be ‘associated’
with the phenotype if the SNP is discovered and replicated at least r times in
100 repetitions.
It may be noted that if we conduct the association analysis, logistic regression

or linear regression, with the entire cohort (sample size N), that is, without
splitting the sample into discovery and replication cohorts, then we are
conducting traditional OS GWAS. However, without having an independent
validation cohort, there is always a concern of false discoveries and the
discovered SNPs are subject to suspicion and criticism. In such situations, the
proposed TSIR approach overcomes this limitation and the simulation studies
suggest that the results based on TSIR approach are more believable and
defensible.

Traditional TS GWAS design
The traditional TS design was introduced as an efficient alternative to
conducting a single GWAS analysis (OS design) that includes all genotyped
participants.4,15 The TS design was proposed as a way to economize on the cost
of genotyping, which was quite high when initial GWAS studies were
undertaken. In a TS design, NTS

1 and NTS
2 are the number of individuals

available for genetic analysis in each of the two stages with NTS ¼ NTS
1 þ NTS

2

being the total sample size. In Stage I, a small set of the individuals
N1

TS = NTS *π (π o 0.3, π is the proportion of participants included in Stage
I) would be used as the discovery cohort for whole-genome genotyping and the
promising markers at liberal levels of type I error control (α1⩾ 0.01) would be
identified. Then, in Stage II, a larger cohort of individuals, independent of those
in Stage I, of size N2

TS = NTS * (1 − π),with (1 − π) 4 0.7, would be used as a
validation cohort for genotyping the markers selected in Stage I. The final list of
markers would be determined based on the results from the Stage II data or in
combined Stages I and II data at more stringent levels of type I error control
(α2=α/M, where M is the number of markers associated with phenotype in
Stage I and α is the genome-wide significance level).4 However, as genotyping
costs have decreased over time, the design of TS GWAS has also changed
accordingly. Importantly, many more individuals are genotyped for markers
spread across the genome in Stage I and tested for association with the
phenotype of interest at increasingly stringent level of type I error (α1), while a
more liberal level of type I error control (α2) is used in Stage II in smaller
cohort of individuals, independent of those in Stage I, as the validation
cohort.15,16 To compare the traditional TS GWAS with the proposed TSIR
approach in the current analysis, the parameters for the TS design were chosen
to reflect the set-up of the TSIR approach.

Figure 1 The two-step iterative re-sampling procedure for GWAS.
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Simulation studies
We performed extensive simulation studies to evaluate the empirical power and
type I error rate of the TSIR procedure for testing associations of SNPs with
binary and continuous phenotypes for different parameter combinations as
shown below. To evaluate the merits of TSIR, we varied the proportion (π) of
individuals included in the discovery cohort from 0.3 to 0.9 in increments of
0.1, and chose α1 = 0.01, 0.001 and 0.0001 (with α2 fixed at 0.05) for both
binary and continuous phenotypes. The prevalence of disease was set at 0.01,
0.1 and 0.3 for the binary phenotype.

Data generation
Genotype generations. Given the minor allele frequency (MAF) pA of minor
allele A (major allele a), the genotype frequencies p(G= g) were calculated
according to Hardy–Weinberg equilibrium law, that is, p(G= 0)= (1–pA)

2, p
(G= 1)= 2pA (1–pA), p(G= 2)= (pA)

2. Two covariates were considered in our
models: x1 a binary variable that takes value of 1 with a probability of 0.5 and 0
otherwise, and x2 a continuous variable that follows a standard normal
distribution. On the basis of these assumed distributions, the complete data
on the genotypes and two covariates for a population of 2 000 000 individuals
were generated.

Phenotype generation
Binary phenotype. The case–control status was determined from the
generated genotype and covariate data according to the model similar to that
of Kang et al.:17

Pr si ¼ 1jGi; xi1; xi2ð Þ ¼ exp a0 þ yGi þ 0:5xi1 þ 0:5xi2ð Þ
1þ exp a0 þ yGi þ 0:5xi1 þ 0:5xi2ð Þ: ð1Þ

We controlled the baseline disease prevalence by setting α0 to 0.3, 0.1 and 0.01
to represent high, moderate and low disease prevalence in the case where all
three regression coefficients corresponding to SNP, xi1 and xi2 are 0.

Continuous phenotype. The continuous phenotype was generated from the
generated genotype and covariate data according to the model outlined by
Wu et al.:18

si ¼ yGi þ 0:5xi1 þ 0:5xi2 þ ei; ð2Þ
where ei is the random error following a standard normal distribution.

Using the models proposed in (1) and (2), N1 cases and N0 controls or N
samples were randomly generated from the simulated population of 2 000 000
individuals for binary or continuous outcomes, respectively.

Assessment of type I error probability
Two values for the MAFs considered were 0.05 and 0.2 in our evaluation of
type I error. The case–control status or the continuous phenotype was
determined from the generated genotype and covariate data by using their
respective models in (1) and (2), with θ = 0. To estimate the type I error rate
of the TSIR approach, 10 000 000 replicated datasets were simulated for the
case–control model, with 250, 350, 450, 550 and 1000 cases and 1, 2.5 and 4
times the numbers of independent controls under the null hypothesis of H0: θ
= 0, respectively. The same numbers of replicated datasets were simulated for
the continuous phenotype study, with 500, 700, 900, 1100 and 2000 samples
under the null hypothesis of H0: θ = 0. We used the number of successful
replication r = 10, 20 and 25 to estimate the type I error rate of the TSIR
procedure. TSIR was applied to each replicate dataset and the empirical type I
error rate was estimated as the proportion of replicates in which the tested SNP
was identified as ‘associated’ with the phenotype using TSIR procedure.

Assessment of power
Three genetic disease models were considered: additive, dominant and recessive
with their corresponding genotype codings of 0, 1, 2; 0, 1, 1; and 0, 0, 1 for
three genotypes aa, Aa and AA. The case–control status or the continuous
phenotype was determined from the generated genotype and covariate data
according to the simulation methods given above, with θ = 0.2, 0.4 and 0.7 to
mimic small, moderate and larger effect sizes, respectively. Datasets were
generated 10 000 times for each configuration. TSIR used for the type I error
simulation was applied to each replicate data-set, and power was estimated as

the proportion of replicates in which the tested SNP was identified as
‘validated.’ On the basis of type I error simulation results, we used n= 20 in
the power estimation of TSIR procedure, as it seemed to control the type I error
rate at the desirable levels such as 5× 10− 5 or 5× 10− 6.

Comparison with the TS design
To investigate the performance of TSIR, we compared the power of TSIR with
that of the TS design under two scenarios based on the different sample sizes.
Under the first scenario, the number of individuals in Stage I is the same as those
for the TSIR approach. Under the second scenario, it is assumed that we have
another independent replication cohort, but the sample sizes in the two stages are
similar to the sample sizes in the discovery and replication stages of the TSIR
approach. The TS designs under two scenarios are denoted by TS1 and TS2,
respectively. To make comparisons reasonable, we selected a significance level
combination of α1=10− 4 and α2=0.05 for the TS design to ensure an overall
type I error rate per SNP of 5×10−6 (Table 1).4 On the basis of power simulation
results above, power was optimized for the TSIR when the ratio of individuals in
the discovery and replication cohorts was 70:30 and assuming that both the
‘discovery’ and ‘validation’ cohorts were sampled from the same homogenous
population. For the TSIR approach, we considered the number of cases for the
binary phenotype to be N1= 280, 560 and 1120 and the number of controls to be
2.5 times the number of cases (N2= 700, 1400 and 2800), with total sample size
of N = (N1 + N2)= 980, 1960 and 3920. For TS1, we considered NTS

1 ¼ N and
NTS

2 ¼ 3
7N

TS
1 ¼ 3

7N NTS ¼ NTS
1 þ NTS

2 ¼ N þ 3N
7 ¼ 10N

7

� �
to be the number of

individuals in Stage I (discovery) and Stage II (validation) of the TS design. We
then randomly sampled N1 and N0 individuals (N = N1 + N0) from the general
population of 2 000 000 individuals for the TSIR approach and also used the same
sample as the Stage I discovery cohort NTS

1 ¼ N ¼ 980; 1960and3920
� �

for the
TS analysis. To create a validation cohort for Stage II for the TS approach, we
randomly sampled NTS

2 ¼ 3
7N

TS
1 ¼ 420; 840and1680 individuals from the general

population of 2 000 000; this kept the ratio of participants in the discovery to
validation datasets (0.7:0.3) consistent with the TSIR approach. For TS2, we
considered the same sample as that for TSIR but mimicked the features of TS
design by splitting N individuals into NTS

1 ¼ 7
10N for Stage I discovery cohort and

NTS
2 ¼ 3

10N for Stage II validation cohort, and then applied association analysis
methods to these two cohorts.
When considering the continuous phenotype, the number of individuals

included in the analyses for the TSIR approach were N = 700, 1400 and 2800.
A similar approach was adopted for analysis of the TS design with
the continuous phenotype. Datasets were generated 10 000 times for each
configuration. The power of TS1 and TS2 was estimated as the proportion
of replicates in which a SNP was discovered in Stage I at P o α1 (where
α1 = 10− 4) and validated in Stage II at P o α2 (where α2 = 0.05).
The power properties of the TSIR approach were also compared with OS

GWAS for simulated N individuals for both binary and continuous outcomes.
The power of the OS procedure was estimated as the proportion of replicates in
which a SNP was statistically significant at a level of α1 ×α2.

Simulation results
Empirical type I error rate of TSIR. Table 1 and Supplementary Table S1
display the empirical type I error rates when r= 20.

When evaluating the binary phenotype using the TSIR approach, as π
increased, so did the empirical type I error; however, the type I error was still
maintained at a level of α1 ×α2 per SNP. If α1 = 10− 3 and 10− 4, the medians
of empirical type one error rate were 0.000033 (range: 0− 0.00007) and
0.000001 (range: 0.000000− 0.0000056), respectively. The TSIR procedure
controlled type I error per SNP at 5 × 10− 5 and 5×10− 6 if α1 = 10− 3 and
10− 4, respectively, which is the same as the type I error control (α1 ×α2) seen
in the TS approach. For smaller sample sizes, such as for N1= 250, it was seen
that, irrespective of the prevalence, the type I error rate was much closer to
α1 ×α2 with discovery cohort proportions of π = 0.6 and 0.7. However, with
the discovery cohort proportion of π= 0.7, the type I error rates were much
better compared with discovery cohort proportions less than 0.7, particularly
for more stringent values of α1, for example, for α1= 0.0001. The type I error
rates corresponding to π= 0.60 and 0.70 are 1.8 and 2.7, 2.8 and 4.2, and 4.1
and 4.9 corresponding to sample sizes of 250, 550 and 1000, respectively.
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It is seen that as the sample size increases, the type I error control improves
and the impact of the proportion of individuals allocated to the discovery stage
relative to the validation stage is minimal when the type I error control used in
the discovery phase is somewhat larger α1⩾ 0.001. But, for more stringent
values of α1, such as α1= 0.0001, the TSIR approach with 70% in the discovery

cohort still provides qualitatively superior type I error control. From Table 1,
similar conclusions can be drawn when the phenotype is continuous.

The type I error rate per SNP was not maintained at α1 ×α2 level when
r= 10 was chosen as the validation cutoff (Supplementary Table S2). Similarly,
the type I error rate per SNP was too conservative when r= 25 was chosen as

Table 1 The empirical type I error rates×105 and 106 of TSIR for identifying a CV with MAF of 0.2 associated with the binary and continuous

phenotype at α1=0.001 and 0.0001, respectively, and using cutoff of r=20 in discovery-replication process

Binary phenotype

0.001 0.0001

α1 Proportion in discovery cohort Proportion in discovery cohort

N1 N0/N1 PA Prev. 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

250 1.0 0.2 0.30 0.07 1.3 3.1 3.6 3.9 0 0.00 0.6 2.1 2.3

250 2.5 0.2 0.30 0.18 1.9 3.5 4.0 4.3 0 0.40 1.6 2.5 3.6

250 4.0 0.2 0.30 0.33 2.0 3.4 4.2 4.3 0 0.10 1.8 3.2 4.3

250 1.0 0.2 0.10 0.05 1.3 3.0 3.6 3.9 0 0.10 0.6 1.7 3.0

250 2.5 0.2 0.10 0.20 1.6 3.2 3.9 4.2 0 0.00 1.2 2.8 3.4

250 4.0 0.2 0.10 0.26 1.7 3.4 3.9 4.3 0 0.40 1.3 2.2 2.7

250 1.0 0.2 0.01 0.07 1.2 2.8 3.6 3.9 0 0.00 0.8 1.8 2.7

250 2.5 0.2 0.01 0.26 2.0 3.7 4.4 4.7 0 0.30 1.8 4.0 4.4

250 4.0 0.2 0.01 0.39 2.3 4.1 4.6 4.8 0 0.00 1.1 3.2 3.9

550 1.0 0.2 0.30 0.36 1.3 2.6 3.1 3.2 0 0.00 0.2 0.6 1.3

550 2.5 0.2 0.30 0.25 2.1 3.8 4.4 4.6 0 0.30 1.9 3.4 3.9

550 4.0 0.2 0.30 0.25 2.1 3.8 4.4 4.7 0 0.20 2.2 2.9 4.0

550 1.0 0.2 0.10 0.20 1.8 3.5 4.0 4.1 0 0.10 1.3 2.3 3.3

550 2.5 0.2 0.10 0.32 2.2 4.0 4.5 4.9 0 0.30 1.8 2.9 3.4

550 4.0 0.2 0.10 0.41 2.2 3.9 4.3 4.6 0.1 0.40 2.3 4 5.0

550 1.0 0.2 0.01 0.22 1.9 3.3 4.0 4.2 0 0.30 1.7 2.8 4.2

550 2.5 0.2 0.01 0.42 2.5 4.2 4.7 5.0 0 0.40 2.0 3.4 4.1

550 4.0 0.2 0.01 0.54 2.5 4.3 4.8 5.1 0 0.80 2.6 3.9 4.3

1000 1.0 0.2 0.30 0.24 2.0 3.9 4.5 4.6 0 0.20 1.9 3.3 4.0

1000 2.5 0.2 0.30 0.37 2.2 3.9 4.5 4.5 0 0.40 1.9 3.6 3.6

1000 4.0 0.2 0.30 0.40 2.2 3.9 4.7 4.7 0 0.24 1.5 3.8 4.3

1000 1.0 0.2 0.10 0.32 2.0 3.7 4.3 4.5 0.1 0.20 2.0 3.3 4.6

1000 2.5 0.2 0.10 0.32 2.1 3.6 4.2 4.4 0 0.10 1.8 3.0 4.3

1000 4.0 0.2 0.10 0.35 2.4 3.9 4.5 4.8 0 0.60 2.0 4.5 4.4

1000 1.0 0.2 0.01 0.32 2.2 3.8 4.4 4.8 0 0.50 2.2 4.1 4.9

1000 2.5 0.2 0.01 0.46 2.4 3.9 4.6 4.7 0 0.10 2.3 3.9 4.9

1000 4.0 0.2 0.01 0.42 2.6 4.3 4.7 4.9 0 0.40 2.2 3.5 4.1

Continuous phenotype

0.001 0.0001

α1 Proportion in discovery cohort Proportion in discovery cohort

N PA 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

500 0.2 0.37 2.3 4.3 4.6 4.9 0.1 0.80 2.6 3.4 4.7

700 0.2 0.33 2.5 4.0 4.6 4.8 0 0.50 2.4 3.9 4.9

900 0.2 0.35 2.4 4.2 4.9 5.1 0 0.20 1.5 3.6 4.3

1100 0.2 0.35 2.2 4.0 4.5 4.7 0 0.20 2.1 3.3 4.6

2000 0.2 0.39 2.2 4.0 4.4 4.7 0 0.60 2.6 4.3 4.3

500 0.05 0.45 2.4 4.0 4.8 4.9 0.12 0.47 3.1 5.2 6.0

700 0.05 0.45 2.3 3.9 4.6 4.9 0 0.80 2.5 3.7 4.0

900 0.05 0.52 2.7 4.6 5.3 5.4 0 0.70 2.7 5.1 5.6

1100 0.05 0.37 2.3 3.9 4.5 4.7 0 0.50 1.7 3.0 3.6

2000 0.05 0.46 2.4 4.4 5.1 5.2 0 0.50 1.9 3.4 3.9

Abbreviations: CV, common variants; MAF, minor allele frequency; TSIR, two-step iterative resampling.
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Figure 2 Empirical power of TSIR for detecting a SNP with a MAF of 0.2 for a binary phenotype. a–c are for small effect size θ = 0.2, moderate effect size
0.4, and large effect size 0.7 for a large prevalence of 0.3, respectively. d–f are for small effect size θ = 0.2, moderate effect size 0.4, and large effect size
0.7 for a small prevalence of 0.01, respectively. The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001, 0.0001 and 0.00001,
respectively.
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the validation cutoff (Supplementary Table S3). In addition, with the discovery
cohort proportion of π= 0.8 and 0.9, the type I error rates were close to those
when π= 0.7 for α1 4 0.0001, but were a little higher than those when π= 0.7
for α1 = 0.0001 (Supplementary Table S3). However, the power when π= 0.7
for all simulated α1 plateaued (see below for empirical power). Thus, for power
estimation or comparison, we will plot the results for π up to 0.7.

Empirical power of TSIR. All power evaluations, discussed below, were
conducted using r= 20 as the validation cutoff. On the basis of the extensive
power simulation studies, the following conclusions can be drawn:

Binary phenotype. From Figures 2 and 3 and Supplementary Figures S1 and
S2, it is seen that when α1= 0.01, the power of the TSIR approach for detecting
a SNP with a MAF of 0.2 is not affected by the proportion of individuals (π)
included in Stage I (discovery cohort). However, as expected, for more
conservative values of α1, that is, α1 ⩽ 10− 3, the power of TSIR approach first
increased sharply and then plateaued with the increasing values of π. Also, not
surprising, as α1 became more conservative, the power of TSIR approach
decreased.

When both the effect size of the SNP and the sample size were small or very
large, the proportion of individuals included in discovery cohort had little effect
on the power of the TSIR approach. In contrast, if the effect size was moderate
or small but the sample size was large, or the effect size was large but the sample
size was small, then the power estimates were optimized when π ranged
between 0.5 and 0.7. However, for stringent values of α1, π = 0.7 for the
discovery cohort provided consistently better power. Neither the prevalence of
disease nor the MAF affected the power of the TSIR approach (Supplementary
Figures S1 and S2).

Continuous phenotype. As seen in Figure 4, for a SNP with large effect size,
for example, θ= 0.7, and MAF= 0.2, the power of TSIR was close to 1
regardless of π, α1 and sample size (⩾500). Similarly, as seen in Figure 4, for a
SNP with a small effect size of θ= 0.2 and MAF= 0.05, the power of TSIR
approach was close to 0 regardless of π, α1 and sample size (⩽2000). As seen
with the binary phenotype, if α1= 10− 3, 10− 4 and 10− 5, with the increasing
proportion π of individuals included in step I, ‘discovery cohort,’ the power of
TSIR first increased sharply then became plateaued around π= 0.6 and 0.7,
which is particularly true for smaller values of α1.

Power comparisons among OS, TSIR, TS1 and TS2. It is clear from Figure 5
that, not surprisingly, the power of TS2 was larger owing to the fact that TS2
procedure used more individuals, and the power of TS1 was lower than OS
even though TS1 uses the same number of individuals as OS but, under OS
procedure, the analysis is conducted only once. The power of TS2 was larger
than that of the TSIR approach especially when the sample size and effect size
were moderate. However, this has to be balanced by the fact that the TS
procedure used 30% more individuals (for the validation cohort) than those
used for TSIR approach. For the binary phenotype, the largest difference in
power estimates between both approaches was seen to be 0.14 when there were
560 cases and 1400 controls corresponding to a SNP with MAF of 0.2 and effect
size of 0.4. For other situations, corresponding to large effect sizes or small/large
sample sizes, the power estimates for the two approaches were comparable and
reasonably close. The power of TSIR was almost identical to that of OS, which
is expected, because for TSIR and OS, the sample was the same but TSIR used a
re-sampling statistical technique to better control possible false positives
(the simulated type I error rate of TSIR was smaller than α1 ×α2 which is
the theoretical type I error rate for OS) at the same time without sacrificing the
power as TS1 did.

All simulation results for TS1, TS2 and TSIR were conducted using the two-
sided test in Stage II for TS1 and TS2 or in step 2 for TSIR, which will have
slightly reduced power because it ignores the direction of association. We re-ran
all simulations using exactly the same parameters as those for Figure 5 and
re-calculated the power for TS1, TS2 and TSIR but used one-sided test in
Stage II or step 2. For the binary phenotype, the maximum gain in power for
TSIR with one-sided test was 0.01. But for the TS1 and TS2, the maximum gain
in power was 0.052 and 0.053, respectively. The very similar conclusions held
for continuous phenotype. One-sided test did improve the power of TSIR, but
the power increase was relatively small which means the TSIR approach is

relatively robust to one-sided or two-sided test owing to 100-round iterative
resampling. For TS1 and TS2, though one-sided test improved their power at
about 5%, our simulations suggest that, in general, TS1 had smaller power than
TSIR and TS2, but TS2 is not feasible owing to the lack of availability of an
external validation cohort. Thus, the results further confirm the good
performance and the practical usefulness of TSIR compared with OS or TS
with or without the availability of additional validation cohort in ongoing and
future GWAS or NGS.

Simulation studies for the obesity SNPs. Simulation studies were also conducted
to estimate the empirical power for detecting association between SNPs
identified for the obesity phenotype in Table 2 using the TSIR approach.10

The simulation parameters were taken to reflect the MAF, prevalence and effect
size (in terms of odds ratios) observed in a cohort of cancer survivors exposed
to cranial radiation therapy cohort (Table 2). Specifically, for each SNP, we first
generated genotype data under Hardy–Weinberg equilibrium with MAF similar
to that observed in the survivor cohort for a population with 2 000 000
individuals as above; and then, generated phenotype (case–control) data from
the generated genotype dataset using the model above with odds ratio and
prevalence of the disease same as those observed for the survivor cohort.
Finally, a sample of 365 cases and 411 controls was randomly drawn from the
population and analyzed using the TSIR approach. This process was repeated
10 000 000 and 10 000 times for the estimation of empirical type I error and
power, respectively. The empirical type I error rate was estimated as the
proportion of times the SNP associated with obesity was validated wrongly and
the empirical power was estimated as the proportion of times the SNP was
validated correctly. For example, for SNP rs2769921 with MAF of 0.43, there
was 69% power using the TSIR approach to detect whether the SNP was truly
associated with obesity in cancer survivors with an odds ratio of 0.577; however,
there was only 3.4 × 10− 6 chance to wrongly identify that this SNP was
associated with obesity in cancer survivors (Table 2). Similarly, for SNP
rs4971486 with MAF of 0.22, the power to detect it was 0.69 if it was truly
associated with obesity with an odds ratio of 1.9 and the type I error was
4.51 × 10− 6 if it were not associated with obesity.

DISCUSSION

It is well recognized that the top signals emerging from GWAS or
next-generation sequencing must be validated in independent
cohorts.19,20 However, independent external validation cohorts among
those with rare diseases can be difficult to find within a limited
timeframe. In such situations, TS resampling approaches have been
used to identify and validate the SNPs associated with binary
phenotypes of interest if the number of cases is not small. One such
approach, namely the TSIR approach, has been proposed and we
evaluated its operating characteristics through extensive simulation
studies. These studies suggest that the TSIR approach, with the choice
of 7:3 partitioning of the original cohort into ‘discovery’ and
‘replication’ cohorts, a cutoff of r= 20 for identifying SNPs associated
with the phenotype in 100 replications, and strictly controlling the
type I error rate below α1 ×α2 provide good type I error control and
near optimal power. In our analyses, using the parameters above the
power of the TSIR approach was found to be slightly lower than that
observed for the TS2 approach, but this is owing to the fact that fewer
individuals were included in the analyses of the TSIR approach than in
the TS approach. Interestingly, with same sample sizes, the power of
the TSIR was almost identical to that of OS, but the TSIR approach
had a conservative type I error control than OS. It is often not possible
to obtain an external cohort for validation for very rare diseases and
unique cohorts. Thus, based on our analyses, we recommend the use
of the TSIR approach for identifying the top candidate SNPs associated
with a particular phenotype of interest. Identification of SNPs using
the TSIR approach may help prioritize those candidate SNPs that
should be evaluated in laboratory studies. However, it should be noted
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Figure 3 Empirical power of TSIR for detecting a SNP with a MAF of 0.05 for a binary phenotype. a–c are for small effect size θ = 0.2, moderate effect size
0.4 and large effect size 0.7 for a large prevalence of 0.3, respectively. d–f are for small effect size θ = 0.2, moderate effect size 0.4 and large effect size
0.7 for a small prevalence of 0.01, respectively. The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001, 0.0001 and 0.00001, respectively.
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Figure 4 Empirical power of TSIR for detecting a SNP with a MAF of 0.05 (a–c) and 0.2 (d, e) for a continuous phenotype. a, b and c are for small effect
size θ = 0.2, moderate effect size 0.4 and large effect size 0.7, respectively. The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001,
0.0001 and 0.00001, respectively.
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Figure 5 Power comparisons between TSIR, OS and TSs for detecting a SNP with MAFs of 0.05 and 0.2 associated with binary (a) and continuous (b)
phenotypes. The first x axis for a and b is for the number of cases (the number of controls is 2.5 times of the number of cases) and the number of
individuals, respectively. The second x axis is for θ. The four bars are for TSIR, OS, TS1 and TS2, respectively. A full color version of this figure is available at
the Journal of Human Genetics journal online.

Table 2 Empirical power and type I error rate (×106) simulation results for 21 SNPs identified associated with BMI

SNPa Chr. Locationb MA OR MAF Empirical power Empirical type I error rate

rs4971486 2 4895318 G 1.936 0.2223 0.686 4.51

rs6745523 2 4908703 A 1.939 0.1768 0.518 3.30

rs1371477 2 4909920 T 1.867 0.1761 0.438 3.61

rs12648678 4 175598280 G 0.5091 0.1699 0.516 3.70

rs2171139 4 175624314 C 0.5196 0.1735 0.503 3.80

rs2443547 5 18173672 C 0.5911 0.4329 0.621 3.90

rs2923765 5 18177252 T 1.682 0.4588 0.588 3.70

rs2972927 5 18178225 T 0.5846 0.4381 0.626 4.60

rs2923756 5 18192581 G 1.836 0.1972 0.443 3.40

rs12514191 5 18198169 G 1.804 0.194 0.404 2.90

rs315825 5 18198934 A 0.595 0.4334 0.612 2.91

rs2938412 5 18205107 A 1.603 0.4472 0.434 4.20

rs453891 5 18212493 T 0.5946 0.4361 0.606 3.60

rs1316610 5 18230131 C 1.835 0.1893 0.453 2.60

rs2972892 5 18234352 T 0.5945 0.4548 0.633 3.30

rs2938451 5 18236104 A 0.5798 0.4186 0.672 3.10

rs2962166 5 18258575 T 0.5867 0.4183 0.627 3.90

rs2972911 5 18258703 A 0.5932 0.4432 0.605 2.70

rs2019973 5 134573992 T 0.6216 0.4691 0.441 3.41

rs2769921 13 107794883 C 0.577 0.43 0.690 3.40

rs12709954 19 56716579 T 0.5784 0.2874 0.515 3.22

Abbreviations: BMI, body mass index; Chr, chromosome; MA, minor allele; MAF, minor allele frequency; OR, odds ratio; SNP, single nucleotide polymorphism.
aSNP identifier according to the dbSNP database.
bPhysical location of SNP based on human gene assembly 19.
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that the TSIR approach is only applicable when the size of the
population of interest is sufficiently large for sample splitting.
In GWAS, the first step prior to statistical genetic association testing

is quality control analysis which includes Hardy–Weinburg disequili-
brium test to remove markers departing from Hardy–Weinberg
equilibrium.21 Thus, in our TSIR simulations, the genotype data are
generated by assuming Hardy–Weinberg equilibrium. However, if we
are concerned about Hardy–Weinburg disequilibrium in a GWAS,
then some statistical association testing method22 that can adjust for
Hardy–Weinburg disequilibrium is available and can be used to
replace the logistic regression in TSIR, but we would expect the
conclusions drawn above would still hold. Furthermore, in our
simulations, we used logistic regression. In the literature, there are
many statistical methods available for genetic association testing,
which can also be used in the TSIR approach.19 We would expect
that the conclusions drawn above would still hold. The common SNPs
with MAFs of 0.2 and 0.05 in GWAS were investigated in this study.
Currently, rare variant association identification in the next-generation
sequencing studies is highly in demand owing to missing inheritability
of complex trait post-GWAS.23 If the sample size of the study is large
enough so that the splitting of the cohort is reasonable, then the TSIR
approach allows for sufficient statistical power to detect the rare
variants in both steps.24 With smaller sample sizes where splitting is
unreasonable, a permutation test may be applied. However, for rare
variant association, we often conduct gene (set)-based analysis,18,25 not
single SNP-based analysis. This way we can use the TSIR procedure as
an internal validation method if there is no external validation cohort
available.
If the individuals in the study cohort are from different populations,

we can just simply adjust for population stratification by including
genetic ancestry score as covariates in the logistic regression model.26

Here, our interest was on detecting genetic effect on the binary
outcome. In post-GWAS, besides rare variant associations above,
gene-environment interaction also has an important role in finding
missing inheritability for complex trait.27 They are worthy of
investigation by simulations, but we would expect that similar
conclusions would hold.
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