Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of HIV-1 gp120 V1/V2 ___domain with broadly neutralizing antibody PG9

Abstract

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet ___domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the V1/V2 ___domain of HIV-1 gp120 in complex with PG9.
Figure 2: Structure of the V1/V2 ___domain of HIV-1 gp120.
Figure 3: PG9–V1/V2 interactions.
Figure 4: PG9 and PG16 recognition of the HIV-1 viral spike, monomeric gp120 and scaffolded V1/V2.
Figure 5: CDR H3 features of V1/V2-directed broadly neutralizing antibodies.
Figure 6: Two glycans and a strand comprise a V1/V2 site of vulnerability.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for PG9 Fab in complexes with V1/V2 from CAP45 and ZM109 strains of HIV-1 have been deposited with the Protein Data Bank under accession codes 3U4E and 3U2S, respectively. Coordinates and structure factors for unbound Fab structures of PG9, CH04, CH04H/CH02L (in two lattices) and PGT145 have been deposited with the Protein Data Bank under accession codes, 3U36, 3TCL, 3U46, 3U4B and 3U1S, respectively.

References

  1. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998)

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wu, S. R. et al. Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure. Proc. Natl Acad. Sci. USA 107, 18844–18849 (2010)

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  4. White, T. A. et al. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog. 6, e1001249 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hu, G., Liu, J., Taylor, K. A. & Roux, K. H. Structural comparison of HIV-1 envelope spikes with and without the V1/V2 loop. J. Virol. 85, 2741–2750 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. Cao, J. et al. Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J. Virol. 71, 9808–9812 (1997)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Stamatatos, L. & Cheng-Mayer, C. An envelope modification that renders a primary, neutralization-resistant clade B human immunodeficiency virus type 1 isolate highly susceptible to neutralization by sera from other clades. J. Virol. 72, 7840–7845 (1998)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pinter, A. et al. The V1/V2 ___domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J. Virol. 78, 5205–5215 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rusert, P. et al. Interaction of the gp120 V1/V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. J. Exp. Med. 208, 1419–1433 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bonsignori, M. et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85, 9998–10009 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  13. Walker, L. M. et al. A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog. 6, e1001028 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Moore, P. L. et al. Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J. Virol. 85, 3128–3141 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kwong, P. D. et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123 (1999)

    Article  PubMed  CAS  Google Scholar 

  16. Huang, C. C. et al. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028 (2005)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pancera, M. et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc. Natl Acad. Sci. USA 107, 1166–1171 (2010)

    Article  ADS  PubMed  Google Scholar 

  18. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen, L. et al. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326, 1123–1127 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kwong, P. D. et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8, 1329–1339 (2000)

    Article  PubMed  CAS  Google Scholar 

  22. Chen, B. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433, 834–841 (2005)

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Ross, S. A., Sarisky, C. A., Su, A. & Mayo, S. L. Designed protein G core variants fold to native-like structures: sequence selection by ORBIT tolerates variation in backbone specification. Protein Sci. 10, 450–454 (2001)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fazi, B. et al. Unusual binding properties of the SH3 ___domain of the yeast actin-binding protein Abp1: structural and functional analysis. J. Biol. Chem. 277, 5290–5298 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Arthos, J. et al. HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells. Nature Immunol. 9, 301–309 (2008)

    Article  CAS  Google Scholar 

  26. Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99, 13419–13424 (2002)

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  27. Pejchal, R. et al. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl Acad. Sci. USA 107, 11483–11488 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981)

    Article  PubMed  CAS  Google Scholar 

  29. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. & Foeller, C. Sequences of Proteins of Immunological Interest 5th edn (US Department of Health and Human Service, National Institutes of Health, 1991)

    Google Scholar 

  30. Pancera, M. et al. Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure–function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J. Virol. 84, 8098–8110 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gorny, M. K. et al. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J. Virol. 79, 5232–5237 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Changela, A. et al. Crystal structure of human antibody 2909 reveals conserved features of quaternary structure-specific antibodies that potently neutralize HIV-1. J. Virol. 85, 2524–2535 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. Spurrier, B. et al. Structural analysis of human and macaque mAbs 2909 and 2.5B: implications for the configuration of the quaternary neutralizing epitope of HIV-1 gp120. Structure 19, 691–699 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Honnen, W. J. et al. Type-specific epitopes targeted by monoclonal antibodies with exceptionally potent neutralizing activities for selected strains of human immunodeficiency virus type 1 map to a common region of the V2 ___domain of gp120 and differ only at single positions from the clade B consensus sequence. J. Virol. 81, 1424–1432 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Wu, X. et al. Immunotypes of a quaternary site of HIV-1 vulnerability and their recognition by antibodies. J. Virol. 85, 4578–4585 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mitsuya, H. et al. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240, 646–649 (1988)

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Schols, D., Pauwels, R., Desmyter, J. & De Clercq, E. Dextran sulfate and other polyanionic anti-HIV compounds specifically interact with the viral gp120 glycoprotein expressed by T-cells persistently infected with HIV-1. Virology 175, 556–561 (1990)

    Article  PubMed  CAS  Google Scholar 

  39. Moulard, M. et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J. Virol. 74, 1948–1960 (2000)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fletcher, P. S., Wallace, G. S., Mesquita, P. M. & Shattock, R. J. Candidate polyanion microbicides inhibit HIV-1 infection and dissemination pathways in human cervical explants. Retrovirology 3, 46 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mondor, I., Ugolini, S. & Sattentau, Q. J. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J. Virol. 72, 3623–3634 (1998)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stanfield, R. L., Gorny, M. K., Williams, C., Zolla-Pazner, S. & Wilson, I. A. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure 12, 193–204 (2004)

    Article  PubMed  CAS  Google Scholar 

  43. Gray, E. S. et al. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4 T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Moore, P. L. et al. Evolution of HIV-1 transmitted/founder viruses results in the formation of epitopes for later broadly cross-neutralizing antibodies. AIDS Res. Hum. Retroviruses 27, A-29 (2011)

    Article  Google Scholar 

  45. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 10.1126/science.1213256 (13 October 2011)

  46. Karasavvas, N. et al. The Thai Phase III clinical trial (RV144) induces the generation of antibodies that target a conserved region within the V2 loop of gp120. AIDS Res. Hum. Retroviruses 27, A-29 (2011)

    Article  Google Scholar 

  47. Zolla-Pazner, S. et al. V2-reactive antibodies in RV144 vaccinees’ plasma. AIDS Res. Hum. Retroviruses 27, A-21 (2011)

    Google Scholar 

  48. Azoitei, M. L. et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334, 373–376 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Sloan, D. J. & Hellinga, H. W. Dissection of the protein G B1 ___domain binding site for human IgG Fc fragment. Protein Sci. 8, 1643–1648 (1999)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Majeed, S. et al. Enhancing protein crystallization through precipitant synergy. Structure 11, 1061–1070 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. Huang, P.-S. et al. RosettaRemodel: A generalized framework for flexible backbone protein design. PLoS ONE 6, e24109 (2011)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  52. Otwinowski, Z. & Minor, W. in Methods Enzymol. Vol. 276, 307–326 (Academic Press, 1997)

    Google Scholar 

  53. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  CAS  PubMed  Google Scholar 

  55. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  56. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987)

    Article  PubMed  CAS  Google Scholar 

  59. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005)

    Article  PubMed  CAS  Google Scholar 

  60. Frank, J., Shimkin, B. & Dowse, H. SPIDER-a modular software system for electron image processin. Ultramicroscopy 6, 343–358 (1981)

    Article  Google Scholar 

  61. He, X. M., Rüker, F., Casale, E. & Carter, D. C. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 89, 7154–7158 (1992)

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  62. Cauerhff, A. et al. Three-dimensional structure of the Fab from a human IgM cold agglutinin. J. Immunol. 165, 6422–6428 (2000)

    Article  PubMed  CAS  Google Scholar 

  63. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  CAS  Google Scholar 

  64. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Mayer, M. & Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001)

    Article  PubMed  CAS  Google Scholar 

  66. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    Article  PubMed  CAS  Google Scholar 

  67. Connolly, M. L. Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558 (1983)

    Article  CAS  Google Scholar 

  68. The PyMOL Molecular Graphics System. Version 1.4 (Schrödinger, LLC, 2011).

  69. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Changela and X. Wu for assistance with mapping the PG16 paratope, J. Sodroski for discussions, J. Stuckey for assistance with figures, and members of the Structural Biology Section and Structural Bioinformatics Core, Vaccine Research Center, for discussions and comments on the manuscript. Support for this work was provided by the Intramural Research Program of the National Institutes of Health (NIH), by the International AIDS Vaccine Initiative, by the Ragon Institute, by the Canadian Institute of Health Research and by grants from the NIH. The three-dimensional reconstructions were conducted at the National Resource for Automated Molecular Microscopy (NRAMM), which is supported by the NIH through the National Center for Research Resources' P41 program (RR017573). Use of sector 22 (Southeast Regional Collaborative Access Team) at the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract number W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

J.S.M., M.P., M.S., T.Z., J.Z., J.A., C.A.B., J.R.M., G.J.N., W.R.S., A.B.W., I.A.W. and P.D.K. designed research and analysed the data; J.S.M., M.P., C.C., J.G., J.-P.J., R.K., R.L., R.P., M.S., K.D., S.O’D., N.P., S.S.H., Y.Y., T.Z., J.C.B., G.-Y.C., D.D., I.G., Y.D.K., D.L., M.K.L., S.M., S.D.S., Z.-Y.Y. and B.Z. performed research and are listed in four alphabetical groups: J.S.M. and M.P. performed the majority of research and, with C.C., J.G., J.-P.J., R.K., R.L., R.P. and M.S., determined structures, K.D., S.O’D., N.P., S.S.H., Y.Y., B.Z., T.Z. and J.Z. contributed substantial experiments, J.C.B., G.-Y.C., D.D., I.G., Y.D.K., D.L., M.K.L., S.M., S.D.S. and Z.-Y.Y. contributed supporting research; M.B., J.A.C., S.H.K., N.E.S. and B.F.H. contributed donor 0219 materials; D.R.B., W.C.K. and L.M.W. contributed donor 24 and donor 84 materials and T13 antibody; S.P. and R.W. contributed 16055 gp120; J.O. and L.-X.W. contributed polysaccharides; J.S.M., M.P., G.J.N., I.A.W. and P.D.K. wrote the paper, with all principal investigators providing comments or revisions.

Corresponding author

Correspondence to Peter D. Kwong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-21 and Supplementary Figures 1-20 with legends. (PDF 3375 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLellan, J., Pancera, M., Carrico, C. et al. Structure of HIV-1 gp120 V1/V2 ___domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011). https://doi.org/10.1038/nature10696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing