Extended Data Figure 8: Genetic and molecular analysis of the cross between strains 227 and 38 of P. septaurelia. | Nature

Extended Data Figure 8: Genetic and molecular analysis of the cross between strains 227 and 38 of P. septaurelia.

From: Genome-defence small RNAs exapted for epigenetic mating-type inheritance

Extended Data Figure 8

a, Maternal inheritance of mating types in the wild-type strain 227. b, Strain 38 is genetically restricted to O expression, but constitutively determined for E. The mutation identified in strain 38 is of particular interest because it affects both the expression and the inheritance of mating types, which suggests that it lies in a gene that controls mating-type determination through an alternative rearrangement. Indeed, known P. tetraurelia mutations fall in two distinct categories. mtAO, mtBO and mtCO prevent expression of type E but have no effect on the rearrangement that determines mating types or on its maternal inheritance, whereas mtFE lies in a trans-acting factor required for a subset of rearrangements during MAC development but has no effect on the expression of mating types during sexual reactivity. The only type of mutation that can be envisioned to affect both expression and determination/inheritance would be a mutation preventing expression of a functional protein required for E expression, and at the same time preventing in cis (by destroying a potential Pgm cleavage site) the rearrangement that normally inactivates this gene in the MAC of wild-type O cells. The mtXIII allele of strain 38 restricts cells to O expression in a recessive manner, but also has a maternal effect that enforces constitutive E determination in sexual progeny. Notably, elegant experiments showed the latter effect to be dominant20: the sexual progeny of a cell carrying at least one mtXIII allele can never be determined for O or transmit O determination. c, Sequencing of the mtB38 allele revealed features that may account for both effects. A frameshift mutation makes it a pseudogene, explaining the genetic restriction to O expression. In addition, a 6-bp deletion removes one of the IES-like boundaries used in the mtB227 allele for coding-sequence deletions in O clones. Given the requirements of IES excision in P. tetraurelia and in sibling species36, this can be predicted to make the same deletions impossible in the mtB38 allele, which would explain the constitutive E determination effect. The full-length mtB38 pseudogene in the MAC of 38 cells would indeed be expected, after a cross to 227, to protect the highly similar zygotic mtB227 allele against coding-sequence deletions in the derived F1, through titration of homologous scnRNAs. d, Molecular analysis of the 38 × 227 cross. To verify this maternal effect, we crossed an E-expressing 227 clone (pmtB51-transformed clone T, same as in Fig. 5b; C, uninjected control) with strain 38, and F1 heterozygotes were tested for mating types and for mtA expression by northern blotting. As expected, F1 heterozygotes deriving from the 38 parent (1b and 2b, as determined by sequencing of a mitochondrial polymorphism) were E and expressed mtA, indicating that the incoming mtB227 allele had been rearranged into a functional, full-length form in the MAC. After autogamy of F1 clone 2b, 24 independent F2 homozygotes were isolated and tested for mating types. Consistent with the Mendelian segregation of mtB alleles, 12 were O and 12 were E (Supplementary Table 5); northern blot analysis of 3 clones of each type showed that only E clones expressed mtA. e, All F2 clones maintained the full-length mtB gene in the MAC. PCR11 (Supplementary Table 6) amplifies an 888-bp fragment from the MAC version of mtB38, and an 893-bp fragment from the full-length MAC version of mtB227. C1 and C2, control PCR11 on two O clones of strain 227, showing the 806-bp and 744-bp fragments resulting from the two alternative coding-sequence deletions. f, Mating types co-segregate with mtB alleles among F2 homozygotes. Digestion of the PCR products with AluI distinguishes the 38 and 227 alleles. mtA and mtC alleles segregated independently (Supplementary Table 5).

Back to article page