Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Comprehensive characterization of the Published Kinase Inhibitor Set

Abstract

Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein–coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis in vitro. These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKIS–kinase screening.
Figure 2: Analysis of kinase screening data.
Figure 3: PKIS–GPCR antagonist assay screening at 8 μM of each compound.
Figure 4: Concentration response curves for compounds GSK238583A, GSK711701A and GW682841X, selected on the basis of their GPCR antagonist screening profile (1) and kinase inhibition profile (2).
Figure 5: Screening against the NCI-60 panel.
Figure 6: Additional characterization of kinase chemical probe starting points.
Figure 7: Phenotypic screen for angiogenic activity of PKIS compounds.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Bamborough, P. System-based drug discovery within the human kinome. Expert Opin. Drug Discov. 7, 1053–1070 (2012).

    CAS  PubMed  Google Scholar 

  2. Cohen, P. & Alessi, D.R. Kinase drug discovery—what's next in the field? ACS Chem. Biol. 8, 96–104 (2013).

    CAS  PubMed  Google Scholar 

  3. Wu, P., Nielsen, T.E. & Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422–439 (2015).

    CAS  PubMed  Google Scholar 

  4. Fedorov, O., Müller, S. & Knapp, S. The (un)targeted cancer kinome. Nat. Chem. Biol. 6, 166–169 (2010).

    CAS  PubMed  Google Scholar 

  5. Edwards, A.M., Bountra, C., Kerr, D.J. & Willson, T.M. Open access chemical and clinical probes to support drug discovery. Nat. Chem. Biol. 5, 436–440 (2009).

    CAS  PubMed  Google Scholar 

  6. Drewry, D.H., Willson, T.M. & Zuercher, W.J. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS). Curr. Top. Med. Chem. 14, 340–342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    PubMed  Google Scholar 

  8. Fedorov, O., Niesen, F.H. & Knapp, S. Kinase inhibitor selectivity profiling using differential scanning fluorimetry. Methods Mol. Biol. 795, 109–118 (2012).

    CAS  PubMed  Google Scholar 

  9. Bamborough, P., Drewry, D., Harper, G., Smith, G.K. & Schneider, K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem. 51, 7898–7914 (2008).

    CAS  PubMed  Google Scholar 

  10. Witherington, J. et al. 5-aryl-pyrazolo[3,4-b]pyridazines: potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. 13, 1581–1584 (2003).

    CAS  PubMed  Google Scholar 

  11. Conway, J.G. et al. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc. Natl. Acad. Sci. USA 102, 16078–16083 (2005).

    CAS  PubMed  Google Scholar 

  12. Takle, A.K. et al. The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 16, 378–381 (2006).

    CAS  PubMed  Google Scholar 

  13. Workman, P. & Collins, I. Probing the probes: fitness factors for small molecule tools. Chem. Biol. 17, 561–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jester, B.W. et al. A coiled-coil enabled split-luciferase three-hybrid system: applied toward profiling inhibitors of protein kinases. J. Am. Chem. Soc. 132, 11727–11735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. & Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    CAS  PubMed  Google Scholar 

  16. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huber, K.V. et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508, 222–227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fourches, D. & Tropsha, A. Using graph indices for the analysis and comparison of chemical datasets. Mol. Inform. 32, 827–842 (2013).

    CAS  PubMed  Google Scholar 

  19. Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    CAS  PubMed  Google Scholar 

  20. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    CAS  PubMed  Google Scholar 

  21. Reinhold, W.C. et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72, 3499–3511 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyazaki, Y. et al. Orally active 4-amino-5-diarylurea-furo[2,3-d]pyrimidine derivatives as anti-angiogenic agent inhibiting VEGFR2 and Tie-2. Bioorg. Med. Chem. Lett. 17, 1773–1778 (2007).

    CAS  PubMed  Google Scholar 

  23. Ardini, E. et al. The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol. 8, 1495–1507 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasegawa, M. et al. Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J. Med. Chem. 50, 4453–4470 (2007).

    CAS  PubMed  Google Scholar 

  25. Belkina, N.V., Liu, Y., Hao, J.J., Karasuyama, H. & Shaw, S. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc. Natl. Acad. Sci. USA 106, 4707–4712 (2009).

    CAS  PubMed  Google Scholar 

  26. Kuramochi, S. et al. LOK is a novel mouse STE20-like protein kinase that is expressed predominantly in lymphocytes. J. Biol. Chem. 272, 22679–22684 (1997).

    CAS  PubMed  Google Scholar 

  27. Viswanatha, R., Ohouo, P.Y., Smolka, M.B. & Bretscher, A. Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. J. Cell Biol. 199, 969–984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    CAS  PubMed  Google Scholar 

  29. Arnaoutova, I. & Kleinman, H.K. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628–635 (2010).

    CAS  PubMed  Google Scholar 

  30. Faivre, S., Demetri, G., Sargent, W. & Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 6, 734–745 (2007).

    CAS  PubMed  Google Scholar 

  31. Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5, 835–844 (2006).

    CAS  PubMed  Google Scholar 

  32. Olsson, A.K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling—in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    CAS  PubMed  Google Scholar 

  33. Verheul, H.M. & Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer 7, 475–485 (2007).

    CAS  PubMed  Google Scholar 

  34. Gao, Y. et al. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem. J. 451, 313–328 (2013).

    CAS  PubMed  Google Scholar 

  35. Anastassiadis, T., Deacon, S.W., Devarajan, K., Ma, H. & Peterson, J.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1039–1045 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, M.I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    CAS  PubMed  Google Scholar 

  37. Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA 104, 20523–20528 (2007).

    CAS  PubMed  Google Scholar 

  38. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    CAS  PubMed  Google Scholar 

  41. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    CAS  PubMed  Google Scholar 

  42. Metz, J.T. et al. Navigating the kinome. Nat. Chem. Biol. 7, 200–202 (2011).

    CAS  PubMed  Google Scholar 

  43. Posy, S.L. et al. Trends in kinase selectivity: insights for target class-focused library screening. J. Med. Chem. 54, 54–66 (2011).

    CAS  PubMed  Google Scholar 

  44. Dranchak, P. et al. Profile of the GSK published protein kinase inhibitor set across ATP-dependent and-independent luciferases: implications for reporter-gene assays. PLoS One 8, e57888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Atkinson, J.M. et al. An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20, 384–399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ember, S.W. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, K., Shelat, A.A., Guy, R.K. & Kastan, M.B. Development of a cell-based, high-throughput screening assay for ATM kinase inhibitors. J. Biomol. Screen. 19, 538–546 (2014).

    CAS  PubMed  Google Scholar 

  48. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    CAS  PubMed  Google Scholar 

  49. Haystead, T.A. The purinome, a complex mix of drug and toxicity targets. Curr. Top. Med. Chem. 6, 1117–1127 (2006).

    CAS  PubMed  Google Scholar 

  50. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  51. Huang, X.P. et al. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine2B receptor agonists: implications for drug safety assessment. Mol. Pharmacol. 76, 710–722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Holbeck, S.L., Collins, J.M. & Doroshow, J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 9, 1451–1460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutros, M., Brás, L.P. & Huber, W. Analysis of cell-based RNAi screens. Genome Biol. 7, R66 (2006).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA), Janssen, Merck & Co., Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome Trust. A.A.H.Z. acknowledges support from the BHF Centre of Research Excellence, Oxford (RE/13/1/30181).

Author information

Authors and Affiliations

Authors

Contributions

K.E.L., J.M.E., A.A.H.Z., J. Morris, S.R., N.S., B.A.T., B.L.R., D.H.D., S.K. and W.J.Z. designed the study. M.S., V.F., K.R.A.A., J.M.E., E.S., A.A.H.Z., J. Mikolajczyk, S.R., N.S. and X.-P.H. performed experiments. J.M.E., A.A.H.Z., J. Morris, B.A.T., A.T., X.-P.H., D.F., E.M., F.L.A., J.P.O., P.B., D.H.D., S.M., S.K., E.P., M.K. and W.J.Z. analyzed data. J.M.E., B.L.R., X.-P.H., A.A.H.Z., P.B., D.H.D., D.J.P., T.M.W., S.K. and W.J.Z. wrote the manuscript.

Corresponding authors

Correspondence to David H Drewry, Stefan Knapp or William J Zuercher.

Ethics declarations

Competing interests

S.R. and N.S. are current employees of Nanosyn, Inc. J.P.O. is a current employee of Stratified Medical Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1-11 and Supplementary Figures 1-12 (PDF 6677 kb)

Supplementary Data (ZIP 8572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkins, J., Fedele, V., Szklarz, M. et al. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat Biotechnol 34, 95–103 (2016). https://doi.org/10.1038/nbt.3374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3374

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research