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IKK2 is one of the most crucial signaling kinases for activation of the 

transcription factor NF-kappa B. Since many NF-kappa B activating 

pathways converge at the level of IKK2, we searched for interaction 

partners of this kinase using the C-terminal part (aa 466-756) as bait in 

a yeast two-hybrid system. We identified the N-terminal part (aa 1-

228) of the TNF-receptor associated factor TRAF1 as putative 

interaction partner, which was subsequently confirmed in mammalian 

cells by coimmunoprecipitation experiments. However, this interaction 

seemed weaker than the interaction between TRAF1 and TRAF2, an 

important activating adapter molecule of NF-kappa B signaling 

indicating that relative levels of IKK2, TRAF1 and TRAF2 might be 

important for the final biological readout. Reporter gene and kinase 

assays using ectopic expression of TRAF1 indicated that it can have 

both activating and inhibiting functions for IKK2 and NF-kappa B. Co-

expression of fluorescently tagged TRAF1 and TRAF2 at different ratios 

implied that TRAF1 can affect clustering and presumably the activating 

function of TRAF2 in a dose dependent manner. 

 

INTRODUCTION 

The NF-kappa B family of transcription factors is essential for a great 

variety of biological processes such as inflammation, cell survival, 

regulation of apoptosis, proliferation and cell differentiation. There are 

two major signaling pathways leading to NF-kappa B: the classical or 

canonical pathway originating at TNF-,  IL-1 or Toll-like receptors and 

the alternative pathway initiated for instance at CD40 [1]. Both 

pathways converge at the level of the IB kinase (IKK) complex, which 

consists basically of two related kinases (IKK1 and IKK2) and an essential 

adapter (termed NEMO for NF-kappa B essential modulator). The IB 

kinases can then phosphorylate inhibitors of NF-kappa B on two 

adjacent serine residues, marking them for polyubiquitination, which 

results in their degradation by 26S proteasomes and release of active 

NF-kappa B. The classical activation pathway signals primarily to IKK2, 

whereas the alternative pathway triggers predominantly IKK1 activity [1, 

2]. Nevertheless, these two kinases influence each other [3, 4] and 

interact with a variety of additional signaling molecules [1]. It is currently 

still not clear, which interactions can occur simultaneously and whether 

certain molecular associations are mutually exclusive or influence each 

other and as a consequence also the NF-kappa B signaling cascade. In 

the last few years, it became increasingly clear that ubiquitination 

processes exert important functions in the activation of the IKK complex 

[2]. These ubiquitinations are triggered by TRAF molecules (mainly 

TRAF2, TRAF5 and TRAF6), which contain RING domains that have E3 

ligase activity catalyzing non-degradative K63-linked polyubiquitination. 

In contrast to K48-linked polyubiquitin, K63-linked polyubiquitin chains 

do not lead to proteasomal degradation but rather serve as an 

association and signaling platform for certain ubiquitin binding proteins, 

such as TAB1 and TAB2 in combination with the kinase TAK1 [5]. K63-

linked polyubiquitination thereby results in binding and activation of 

TAK1, which then activates IKK2. TRAF1 is the only TRAF-adapter 

molecule lacking a RING domain and therefore does not act as a 

ubiquitinase [6, 7]. Of note, TRAF molecules form homo- or 

heterotrimeric complexes. It has been suggested that the composition of 

heterotrimers is important for signaling function. Interestingly, both 

positive and negative regulatory effects of TRAF1 on NF-kappa B 

signaling have been reported. In cell culture systems overexpression of 

TRAF1 resulted either in inhibition [8]  or in augmentation [9] of NF-

kappa B activity. Similar conflicting data have been obtained in knockout 

mouse models.  T-cells from TRAF1-deficient mice showed enhanced NF-

kappa B activity and increased IKK2 activity [10], whereas dendritic cells 

from TRAF1-deficient mice showed attenuated NF-kappa B signaling in a 

different study [11]. The effect of TRAF1 on signaling is further 

complicated by the fact that it is a substrate of caspases and therefore 

cleaved in the course of apoptosis. This leads to a release of the TRAF-

domain, which then acts as an inhibitor of NF-kappa B signaling [12].  

In this study we provide evidence for a specific interaction of TRAF1 with 

IKK2 and we demonstrate that this molecular association is weaker than 

TRAF1 / TRAF2 interaction. Based on this observation and the findings 

that ectopic expression of TRAF1 can have both inhibitory and 

stimulatory effects on IKK2 and NF-kappa B activity, we propose a 

model, in which relative levels of TRAF1, TRAF2 and IKK2 are important 

for regulating the signaling activity of IKK2.  

 

METHODS 

Yeast two-hybrid screening was performed with the C-terminal part of 

IKK2 (amino acids 466 – 756) essentially as described [13] using a library 

from activated leukocytes. After identification of TRAF1 as potential 

binding partner, all the TRAF molecules (TRAF1-TRAF6; kindly provided 

by David Sassoon, [14]) were tested in the yeast two-hybrid system for 

interaction with the IKK2 bait. Mammalian two-hybrid assays were 

performed with the Matchmaker™ system provided by Clontech 

according to the instructions of the manufacturer with the exception 

that the pFR-Luc vector from Stratagene was used in combination with a 

luciferase reporter gene assay as described in [15].  

Coimmunoprecipitations were carried out as specified in [16] using 

transfected HeLa cells and kinase assays were done as depicted in [13]. 

 

RESULTS AND DISCUSSION 

Our aim was to identify interaction partners of IKK2 as a key enzyme for 

NF-kappa B activation. To that end, we performed a yeast two-hybrid 

screening with the C-terminal part of IKK2 as bait. This part contains a 

helix-loop-helix domain and a leucine zipper as potential protein 

interaction domains. Among various signaling molecules, we also 

identified an N-terminal fragment of TRAF1 (amino acids 1 – 228) as 

putative binding partner. Next, we tested, whether other members of 

the TRAF family are capable of interacting with IKK2 using yeast two-

hybrid constructs for all TRAFs. In this system, only TRAF1 interacted 

with the IKK2-bait (Fig.1A). Testing IKK1 as bait in combination with all 

the TRAF molecules (TRAF1 – TRAF6) did not reveal any significant 

interaction (data not shown). The binding of IKK2 and TRAF1 could be 

verified in a mammalian two-hybrid reporter assay, demonstrating that 

the interaction was not an artifact of the yeast system (Fig. 1B). 

Furthermore, we could clearly demonstrate the interaction between full 

length IKK2 and full-length TRAF1 in human cells by applying co-

immunoprecipitation experiments (Fig. 1C). Similar experiments with the 

N-terminal part (aa 1 – 228) of TRAF1 verified the results of the yeast 

two hybrid system that the N-terminal domain lacking the TRAF domain 

is sufficient for the interaction with IKK2 (data not shown). However, it 

has to be noted that also the TRAF-domain seems to be capable of 

interacting with the IKK-complex [12]. In contrast to the co-precipitation 

of TRAF1 with IKK2, we could not detect any co-immunoprecipitation of 

TRAF2 with IKK2. Moreover, co-expression of TRAF2 reduced the 

amount of TRAF1 that was coprecipitated with IKK2 indicating that 
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TRAF2 might compete with IKK2 for TRAF1 binding (Fig. 1C). This 

possibility was further tested by co-immunoprecipitation of TRAF1 and 

TRAF2, which revealed that these two molecules interact with each 

other at a rather high NaCl concentration of 500 mM (Fig. 1D). At this 

salt concentration, we could not detect any significant interaction 

between TRAF1 and IKK2 (data not shown) indicating that TRAF1/TRAF2 

binding may be stronger than the association between TRAF1 and IKK2. 

As a consequence, it has to be expected that TRAF1 would rather bind 

TRAF2 as long as the later is not saturated. Specific interaction between 

IKK2 and TRAF1 but not other TRAF family members is supported by the 

fact that IKK2 interacts with the N-terminal part of TRAF1, which differs 

from all the other TRAF family members (Fig. 1e). The C-terminal 

interaction domain of IKK2 does not include the kinase domain, 

suggesting that it may still be accessible for substrates.   

 

Testing the effect of TRAF1 expression in NF-kappa B reporter gene 

assays revealed at first sight conflicting results. While TRAF1 clearly 

inhibited IKK2-mediated NF-kappa B activation in some experiments (Fig. 

2A), some expression constructs also led to stimulation of NF-kappa B 

activity in other experiments (Fig. 2A right). This variable effect was also 

observed in kinase assays, where TRAF1 resulted either in a slight 

inhibition of IKK2 activity (Fig. 2B, upper part), or in a significant 

stimulation of the activity (Fig. 2B, lower part). Interestingly, we could 

observe that another IKK2-interacting protein (Rpn5) also led to a 

stimulation of IKK2 activity in the later case. A possible explanation for 

this phenomenon is that IKK2 interacting proteins might trigger 

clustering of IKK2 molecules and subsequent self-activation by auto-

phosphorylation. According to this hypothesis the level of the IKK2 

interacting molecules relative to the amount of IKK2 might be important 

for exerting either a stimulatory or an inhibitory effect. This model can 

also be applied to other interaction partners of TRAF1. Since TRAF2 is an 

important positively acting signaling molecule interacting with TRAF1, 

we also tested the effect of TRAF1 on TRAF2. Upon ectopic expression as 

a fluorescent fusion protein in cells, TRAF2 forms distinct clusters in the 

cytosol. This is most likely reflecting the inherent propensity of TRAF2 to 

trigger the oligomerization of other signaling molecules or kinases by 

self-interaction via the TRAF-domain. Co-expression of a CFP-tagged 

TRAF1 with YFP-tagged TRAF2 resulted in a dose dependent 

disaggregation of the TRAF2 clusters, revealing that TRAF1 has the 

capability of influencing the oligomerization of TRAF2 (Fig. 3) important 

for its signaling function. 

 

Of note, TRAF1 is transcriptionally upregulated by NF-kappa B [7, 9], and 

degradation of TRAF2 is triggered by the NF-kappa B signaling pathway 

[6, 7]. The combination of these two effects is expected to shift the 

 

Fig. 2: TRAF1 can exert both inhibitory and stimulatory effects on 

IKK2 and NF-kappa B activity. A) Effect of TRAF1 in NF-kappa B 

reporter gene assays. Left panel: 293 cells were transfected with a NF-

kappa B luciferase reporter and IKK2 in absence or presence of a 

TRAF1 expression construct. Right panel: HeLa cells were transfected 

with the NF-kappa B reporter and two different TRAF1 constructs as 

indicated followed by treatment with TNF (50 ng/ml for 6 h). B) 

Effect of TRAF1 on IKK2 activity. Upper left panel: In vitro kinase 

assay using IKK2 immunoprecipitated from 293 cells transfected with 

IKK2 alone or in combination with TRAF1. Upper right: quantification 

of phosphorylated IB and auto-phosphorylated IKK2. Lower left 

panel: Kinase assay and Western Blot of IKK2 or mutant IKK2 (IKK2-

mut) in combination with TRAF1 or the IKK2 interacting protein Rpn5. 

Lower right: Quantification of IB phosphorylation. 

 

 

 

Fig. 1: IKK2 interacts specifically with TRAF1. A) Yeast two hybrid 

assay: The C-terminal domain of IKK2 interacts specifically with 

TRAF1 but not TRAF2 – TRAF6.  B) Verification of the interaction in 

mammalian cells using a mammalian two-hybrid system. A Luciferase 

reporter assay was done with empty (-) bait or prey constructs, IKK2, 

TRAF1 or control as indicated. C) Coimmuno-precipitation of IKK2 

and TRAF1 after transfection of HeLa cells with flag- or HA-tagged 

expression constructs as indicated and immunoprecipitation (IP) in 

presence of 250 mM NaCl. D) Coimmuno-precipitation of TRAF1 and 

TRAF2 in presence of 500 mM NaCl. E) Schematic illustration of the 

interaction domains as depicted by the overlapping rectangle. Amino 

acids 466-756 of IKK2 including a leucine zipper (LZ), a helix-loop-

helix domain (HLH) and the NEMO binding domain (NBD) interact 

with amino acids 1 – 228 of TRAF1 (containing a Zn-finger). 
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balance of the TRAF1/TRAF2 ratio and might therefore lead to a shift 

from TRAF1/TRAF2 complexes to TRAF1/IKK2 complexes. This has 

potential consequences for IKK2 and NF-kappa B activity dependent on 

the cellular context and the relative levels of TRAF1 and IKK2. Since 

TRAF1 does not contain a RING domain for K63-linked 

polyubiquitination, it might be expected that it is not an activator of the 

NF-kappa B pathway by itself, but rather an inhibitor. However, since 

TRAF1 binds other TRAF molecules which are activators of NF-kappa B 

signaling, it may also function as an activator in conjunction with these 

proteins at a certain stoichiometry. Moreover, binding of TRAF1 to IKK2 

may also directly influence IKK2 activity by affecting proximity-induced 

auto-phosphorylation and self-activation of IKK2. Taken together it 

seems likely that TRAF1 exerts variable regulatory functions in NF-kappa 

B signaling dependent on the presence and relative levels of other 

signaling molecules and the cellular context. 
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Fig. 3: TRAF1 influences the clustering tendency of TRAF2 

in a dose dependent manner. YFP-tagged TRAF2 was 

expressed either alone or in combination with CFP-tagged 

TRAF1 in 293 cells at a ratio of 1:1 or 1:9 as indicated. A 

higher level of TRAF1 led to the disaggregation of TRAF2 

clusters. 
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