Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin

Abstract

Little is known about the kinetic process in which stable intermediates in protein folding are formed: whether their folding is highly cooperative (two-state) or weakly cooperative is controversial. We report here that the folding and unfolding kinetics of the pH 4-stable intermediate (I1) of apomyoglobin are measurable, in the millisecond time range, when monitored by stopped-flow measurements of tryptophan fluorescence. The kinetics confirm that folding of I1 is strongly cooperative, but there is a burst phase (missing amplitude) in unfolding. If the faster steps in unfolding of I1 can be measured directly by suitable fast-reaction methods, they will give information about the nature of the folding transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tanford, C. Protein denaturation. Adv. Prot. Chem. 23, 122–282 (1968).

    Google Scholar 

  2. Privalov, P.L. Stability of proteins: small globular proteins. Adv. Prot. Chem. 33, 167–241 (1979).

    CAS  Google Scholar 

  3. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Ann. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  4. Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. & Nagamura, T. Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 221, 115–118 (1987).

    Article  CAS  Google Scholar 

  5. Baldwin, R.L. Pulsed H/D exchange studies of folding intermediates. Curr. Opin. Struct. Biol. 3, 84–91 (1993).

    Article  CAS  Google Scholar 

  6. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  7. Ikeguchi, M., Kuwajima, K., Mitani, M. & Sugai, S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of α-lactalbumin and lysozyme. Biochemistry 25, 6965–6972 (1986).

    Article  CAS  Google Scholar 

  8. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  9. Griko, Y.V., Privalov, P., Venyaminov, Y.S. & Kutyshenko, V.P. Thermodynamic study of the apomyoglobin structure. J. Mol. Biol. 202, 127–138 (1988).

    Article  CAS  Google Scholar 

  10. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  11. Kay, M.S. & Baldwin, R.L. Packing in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  12. Loh, S.N., Kay, M.S., Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA 92, 5446–5450 (1995).

    Article  CAS  Google Scholar 

  13. Roder, H. Structural characterization of protein folding intermediates by proton magnetic resonance and hydrogen exchange. Meth. Enzymol. 176, 446–473 (1989).

    Article  CAS  Google Scholar 

  14. Schmid, F.X. Kinetics of unfolding and refolding in single-___domain proteins. in Protein Folding (ed. I.E. Creighton) 197–241 (Freeman and Co., New York, 1992).

    Google Scholar 

  15. Dobson, C.M., Evans, P.A. & Radford, S.E. Understanding how proteins fold: the lysozyme story so far. Trends. Biochem. Sci. 19, 31–37 (1994).

    Article  CAS  Google Scholar 

  16. Woodruff, W.H., Dyer, R.B., Williams, S., Callender, R.H. & Gilmanshin, R. Fast events in protein folding and unfolding: time-resolved infrared study of structure changes in apomyoglobin and model peptides. Protein Sci. 4 (2) 68 (1995).

  17. Santoro, M.M. & Bolen, D.W. Unfolding free energies determined by the linear extrapolation method, 1. Unfolding of phenylmethane sulfonyl α-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  18. Tanford, C. Protein denaturation. Part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem. 24, 2–95 (1970).

    Google Scholar 

  19. Chen, B., Baase, W.A., Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 27, 691–699 (1989).

    Article  Google Scholar 

  20. Schellman, J.A. Selective binding and solvent denaturation. Biopolymers 26, 549–559 (1987).

    Article  CAS  Google Scholar 

  21. Nishii, I., Kataoka, M. & Goto, Y. Thermodynamic stability of the molten globule states of apomyoglobin. J. Mol. Biol. 250, 223–238 (1995).

    Article  CAS  Google Scholar 

  22. Pörschke, D. & Eigen, M. Cooperative Non-enzymatic base recognition. III. Kinetics of the helix-coil transition of the oligoribouridylic-oligoriboadenylic acid alone at acidic pH. J. Mol. Biol. 62, 361–381 (1971).

    Article  Google Scholar 

  23. Pörschke, D. A direct measurement of the unzippering rate of a nucleic acid double helix. Biophys. Chem. 2, 97–101 (1974).

    Article  Google Scholar 

  24. Tsong, T.Y., Baldwin, R.L. & McPhie, P. A sequential model of mucleation-dependent protein folding: kinetic studies of ribonuclease A. J. Mol. Biol. 63, 453–469 (1972).

    Article  CAS  Google Scholar 

  25. Elson, E.L. Analysis of the steady-state approximation for the sequential model. J. Mol. Biol. 63, 469–475 (1972).

    Article  CAS  Google Scholar 

  26. Fersht, A.R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

    Article  CAS  Google Scholar 

  27. Shakhnovich, E., Abkevich, V. & Ptitsyn, O. Conserved residues and the mechanism of proten folding. Nature 379, 96–98 (1996).

    Article  CAS  Google Scholar 

  28. Gittis, A.G., Stites, W.E. & Lattman, E.E. The phase transition between a compact denatured state and a random coil state in staphylococcal nuclease is first-order. J. Mol. Biol. 232, 718–724 (1993).

    Article  CAS  Google Scholar 

  29. Griko, Y.V., Griko Freire, E. & Privalov, P.L. Energetics of the α-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry 33, 1889–1899 (1994).

    Article  CAS  Google Scholar 

  30. Griko, Y.V. & Privalov, P.L. Thermodynamic puzzle of apomyoglobin unfolding. J. Mol. Biol. 235, 1318–1325 (1994).

    Article  CAS  Google Scholar 

  31. Ptitsyn, O.B. & Uversky, V.N. The molten globule is a third thermodynamical state of protein molecules. FEBS Lett. 341, 15–18 (1994).

    Article  CAS  Google Scholar 

  32. Kiefhaber, T. & Baldwin, R.L. Intrinsic stability of individual α-helices modulates structure and stability of the apomyoglobin molten globule form. J. Mol. Biol. 252, 122–132 (1995).

    Article  CAS  Google Scholar 

  33. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  34. Tonomura, B., Nakatani, H., Ohnishi, M., Yamaguchi-lto, J. & Hiromi, K. Test reaction for a stopped-flow apparatus. Anal. Biochem. 84, 370–383 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamin, M., Baldwin, R. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nat Struct Mol Biol 3, 613–618 (1996). https://doi.org/10.1038/nsb0796-613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing