Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules

Abstract

Bacterial superantigens are small proteins that have a very potent stimulatory effect on T lymphocytes through their ability to bind to both MHC class II molecules and T-cell receptors. We have determined the three-dimensional structure of a Streptococcal superantigen, SPE-C, at 2.4 Å resolution. The structure shows that SPE-C has the usual superantigen fold, but that the surface that forms a generic, low-affinity MHC-binding site in other superantigens is here used to create a SPE-C dimer. Instead, MHC class II binding occurs through a zinc binding site that is analogous to a similar site in staphylococcal enterotoxin A. Consideration of the SPE-C dimer suggests a novel mechanism for promotion of MHC aggregation and T-cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Germain, R.M. & Margulies, D.H. Annu. Rev. Immunol. 11, 403–450 (1993).

    CAS  PubMed  Google Scholar 

  2. Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science 248, 705–711 (1990).

    CAS  PubMed  Google Scholar 

  3. Herman, A., Kappler, J.W., Marrack, P. & Pullen, A.M. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9, 745–772 (1991).

    CAS  PubMed  Google Scholar 

  4. Fraser, J.D. High affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339, 221–223 (1989).

    CAS  PubMed  Google Scholar 

  5. Mollick, J.A., Cook, R.G. & Rich, R.R. Class II MHC molecules are specific receptors for staphylococcal enterotoxin A. Science 244, 817–820 (1989).

    CAS  PubMed  Google Scholar 

  6. White, J. et al. The Vβ-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56, 27–35 (1989).

    CAS  PubMed  Google Scholar 

  7. Kappler, J. et al. Vβ-specific stimulation of human T cells by staphylococcal toxins. Science 244, 811–813 (1989).

    CAS  PubMed  Google Scholar 

  8. Choi, Y.W. et al. Residues of the variable region of the T-cell receptor beta-chain that interact with S. aureus toxin superantigens. Nature 346, 471–473 (1990).

    CAS  PubMed  Google Scholar 

  9. Bohach, G.A., Fast, D.J., Nelson, R.D. & Schlievert, P.M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illness. Crit. Rev. Microbiol 17, 251–272 (1990).

    CAS  PubMed  Google Scholar 

  10. Kotzin, B.L., Leung, D.Y., Kappler, J. & Marrack, P. Superantigens and their potential role in human disease. Adv. Immunol. 54, 99–166 (1990).

    Google Scholar 

  11. Schad, E.M. et al. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 14, 3292–3301 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Swaminathan, S., Furey, W., Pletcher, J. & Sax, M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359, 801–806 (1992).

    CAS  PubMed  Google Scholar 

  13. Papageorgiou, A.C. et al. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure, 3, 769–779 (1995).

    CAS  PubMed  Google Scholar 

  14. Swaminathan, S., Furey, W., Pletcher, J. & Sax, M. Residues defining Vβ specificity in staphylococcal enterotoxins. Nature Struct. Biol. 2, 680–686 (1995).

    CAS  PubMed  Google Scholar 

  15. Acharya, K.R. et al. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 367, 94–97 (1994).

    CAS  PubMed  Google Scholar 

  16. Prasad, G.S. et al. Structure of toxic shock syndrome toxin-1. Biochemistry 32, 13761–13766 (1993).

    CAS  PubMed  Google Scholar 

  17. Jardetzky, T.S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718 (1994).

    CAS  PubMed  Google Scholar 

  18. Kirn, J., Urban, R.G., Strominger, J.L. & Wiley, D.C. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 266, 1870–1874 (1994).

    Google Scholar 

  19. Fraser, J.D., Urban, R.G., Strominger, J.L. & Robinson, H. Zinc regulates the function of two superantigens. Proc. Natl. Acad. Sci. USA 89, 5507–5511 (1992).

    CAS  PubMed  Google Scholar 

  20. Hudson, K.R. et al. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class-II. J. Exp. Med. 189, 711–720 (1995).

    Google Scholar 

  21. Goshorn, S.C. & Schlievert, P.M. Nucleotide sequence of streptococcal pyrogenic exotoxin type C. Infect. Immun. 56, 2518–2520 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, P-L., Teidemann, R.E., Moffat, S.L. & Fraser, J.D. The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action, J. Exp. Med., in the press.

  23. Sundström, M. et al. The crystal structure of staphylococcal enterotoxin type D revealsZn2+-mediated homodimerisation. EMBO J. 15, 6832–6840 (1996).

    PubMed  PubMed Central  Google Scholar 

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  25. Overington, J.P. Comparison of the three-dimensional structures of homologous proteins. Curr. Opin. Struct Biol. 2, 394–401 (1992).

    CAS  Google Scholar 

  26. Vallee, B.L. & Auld, D.S. Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).

    CAS  PubMed  Google Scholar 

  27. Jones, S. & Thornton, J.M. Protein-protein interactions — a review of protein dimer interactions. Prog. Biophys. Mol. Biol. 63, 31–65 (1995).

    CAS  PubMed  Google Scholar 

  28. Wilson, I.A. & Stanfield, R.L. Antibody-antigen interactions. Curr. Opin. Struct. Biol. 3, 113–118 (1993).

    CAS  Google Scholar 

  29. Kappler, J.W., Herman, A., Clements, J. & Marrack, P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 175, 387–396 (1992).

    CAS  PubMed  Google Scholar 

  30. Abrahmsen, L. et al. Characterisation of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 14, 2978–2986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulrich, R.G., Bavari, S. & Olson, M.A. Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Nature Struct. Biol. 2, 554–560 (1995).

    CAS  PubMed  Google Scholar 

  32. Fraser, J.D., Lowe, S., Irwin, M.J., Gascoigne, N.R. & Hudson, K.R. Structural model of staphylococcal enterotoxin A interaction with MHC class II antigens. In Superantigens: A pathogen's view of the immune system 7 (eds Huber, B.T. & Palmer, E.) 7–29 (Cold Spring Harbor Press, New York; 1993).

    Google Scholar 

  33. Herman, A. et al. Identification of the staphylococcal enterotoxin A superantigen binding site in the beta 1 ___domain of the human histocompatibility antigen HLA-DR. Proc. Natl. Acad. Sci. USA 88, 9954–9958 (1991).

    CAS  PubMed  Google Scholar 

  34. Karp, D.R. & Long, E.O. Identification of HLA-DR1 beta chain residues critical for binding staphylococcal enterotoxins A and E. J. Exp. Med. 175, 415–424 (1992).

    CAS  PubMed  Google Scholar 

  35. Fields, B.A. et al. Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384, 188–192 (1996).

    CAS  PubMed  Google Scholar 

  36. Blanco, L., Choi, E.M., Connolly, K., Thompson, M.R. & Bonventre, P.F. Mutants of staphylococcal toxic shock syndrome toxin 1: mitogenicity and recognition by a neutralizing monoclonal antibody. Infect. Immun. 58, 3020–3028 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonventre, P.F., Heeg, H., Cullen, C.M. & Lian, C-J. Toxicity of recombinant toxic shock syndrome toxin and mutant toxins produced by Staphylococcus aureus in a rabbit infection model of toxic shock syndrome. Infect. Immun 61, 793–799 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hurley, J.M. et al. Identification of class II major histocompatibility complex and T cell receptor binding sites in the superantigen toxic shock syndrome toxin 1. J. Exp. Med. 181, 2229–2235 (1995).

    CAS  PubMed  Google Scholar 

  39. Tiedemann, R.E. & Fraser, J.D. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. J. Immunol. 157, 3958–3966 (1996).

    CAS  PubMed  Google Scholar 

  40. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    CAS  PubMed  Google Scholar 

  41. Sakabe, N. X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using Synchrotron radiation. Nucl. Instr. and Methods in Phys. Res. A303, 448–463 (1991).

    CAS  Google Scholar 

  42. Otwinowski, Z. Oscillation data reduction program. In Data Collection and Processing (eds Sawyer, L., Isaacs N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  43. Collaborative Computational Project No.4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Cowtan, K. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter in Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  45. Brunger, A.T. X-PLOR version 3.1, a system for X-ray crystallography and NMR.(Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  46. Tronrud, D.E. Conjugate-direction minimization: an improved method for refinement of macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    CAS  Google Scholar 

  47. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A47, 392–400 (1991).

    CAS  Google Scholar 

  48. Bernstein, F.C. et al. The Protein Data Bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussel, A., Anderson, B., Baker, H. et al. Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nat Struct Mol Biol 4, 635–643 (1997). https://doi.org/10.1038/nsb0897-635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0897-635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing