Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conserved structural elements in the V3 crown of HIV-1 gp120

This article has been updated

Abstract

Binding of the third variable region (V3) of the HIV-1 envelope glycoprotein gp120 to the cell-surface coreceptors CCR5 or CXCR4 during viral entry suggests that there are conserved structural elements in this sequence-variable region. These conserved elements could serve as epitopes to be targeted by a vaccine against HIV-1. Here we perform a systematic structural analysis of representative human anti-V3 monoclonal antibodies in complex with V3 peptides, revealing that the crown of V3 has four conserved structural elements: an arch, a band, a hydrophobic core and the peptide backbone. These are either unaffected by or are subject to minimal sequence variation. As these regions are targeted by cross-clade neutralizing human antibodies, they provide a blueprint for the design of vaccine immunogens that could elicit broadly cross-reactive protective antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three regions of the V3 crown as revealed by the structure of Fab 2557 in complex with four V3 peptides.
Figure 2: Conserved binding mode of human mAbs 1006 and 2557.
Figure 3: Fab 3074 in complex with three V3 peptides.
Figure 4: Sequence-specific binding of Fab 268-D to MN V3 peptide.
Figure 5: Conserved structural elements of V3.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 21 July 2010

    In the version of this article initially published online, 4 residues should have read 13. In addition in figure 1a, circulet should have read circlet. These errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Douek, D.C., Kwong, P.D. & Nabel, G.J. The rational design of an AIDS vaccine. Cell 124, 677–681 (2006).

    Article  CAS  Google Scholar 

  2. Zolla-Pazner, S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol. 4, 199–210 (2004).

    Article  CAS  Google Scholar 

  3. Montefiori, D., Sattentau, Q., Flores, J., Esparza, J. & Mascola, J. Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med. 4, e348 (2007).

    Article  Google Scholar 

  4. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  Google Scholar 

  5. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC–CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  Google Scholar 

  6. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  Google Scholar 

  7. Huang, C.C. et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317, 1930–1934 (2007).

    Article  CAS  Google Scholar 

  8. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  Google Scholar 

  9. Huang, C.C. et al. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028 (2005).

    Article  CAS  Google Scholar 

  10. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  Google Scholar 

  11. Gorny, M.K. et al. Human monoclonal antibodies to the V3 loop of HIV-1 with intra- and interclade cross-reactivity. J. Immunol. 159, 5114–5122 (1997).

    CAS  PubMed  Google Scholar 

  12. Gorny, M.K. et al. Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J. Virol. 76, 9035–9045 (2002).

    Article  CAS  Google Scholar 

  13. Sharon, M. et al. Alternative conformations of HIV-1 V3 loops mimic β hairpins in chemokines, suggesting a mechanism for coreceptor selectivity. Structure 11, 225–236 (2003).

    Article  CAS  Google Scholar 

  14. Rosen, O., Sharon, M., Quadt-Akabayov, S.R. & Anglister, J. Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion. Proc. Natl. Acad. Sci. USA 103, 13950–13955 (2006).

    Article  CAS  Google Scholar 

  15. Cardozo, T. et al. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res. Hum. Retroviruses 23, 415–426 (2007).

    Article  CAS  Google Scholar 

  16. Cardozo, T. et al. Worldwide distribution of HIV type 1 epitopes recognized by human anti-V3 monoclonal antibodies. AIDS Res. Hum. Retroviruses 25, 441–450 (2009).

    Article  CAS  Google Scholar 

  17. Hartley, O., Klasse, P.J., Sattentau, Q.J. & Moore, J.P. V3: HIV's switch-hitter. AIDS Res. Hum. Retroviruses 21, 171–189 (2005).

    Article  CAS  Google Scholar 

  18. LaRosa, G.J. et al. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science 249, 932–935 (1990).

    Article  CAS  Google Scholar 

  19. Gorny, M.K., Xu, J.-Y., Karwowska, S., Buchbinder, A. & Zolla-Pazner, S. Repertoire of neutralizing human monoclonal antibodies specific for the V3 ___domain of HIV-1 gp120. J. Immunol. 150, 635–643 (1993).

    CAS  PubMed  Google Scholar 

  20. Kuiken, C.L. et al. Human Retroviruses and AIDS 1999: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 1999).

  21. Basmaciogullari, S., Babcock, G.J., Van Ryk, D., Wojtowicz, W. & Sodroski, J. Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding. J. Virol. 76, 10791–10800 (2002).

    Article  CAS  Google Scholar 

  22. Ratner, L. et al. Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res. Hum. Retroviruses 3, 57–69 (1987).

    Article  CAS  Google Scholar 

  23. Dhillon, A.K. et al. Structure determination of an anti-HIV-1 Fab 447–52D-peptide complex from an epitaxially twinned data set. Acta Crystallogr. D Biol. Crystallogr. 64, 792–802 (2008).

    Article  CAS  Google Scholar 

  24. Stanfield, R.L., Gorny, M.K., Williams, C., Zolla-Pazner, S. & Wilson, I.A. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447–52D. Structure 12, 193–204 (2004).

    Article  CAS  Google Scholar 

  25. Stanfield, R.L., Gorny, M.K., Zolla-Pazner, S. & Wilson, I.A. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J. Virol. 80, 6093–6105 (2006).

    Article  CAS  Google Scholar 

  26. Burke, V. et al. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 17, 1538–1546 (2009).

    Article  CAS  Google Scholar 

  27. Bell, C.H. et al. Structure of antibody F425–B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J. Mol. Biol. 375, 969–978 (2008).

    Article  CAS  Google Scholar 

  28. Javaherian, K. et al. Principal neutralizing ___domain of the human immunodeficiency virus type 1 envelope protein. Proc. Natl. Acad. Sci. USA 86, 6768–6772 (1989).

    Article  CAS  Google Scholar 

  29. Carrow, E.W. et al. High prevalence of antibodies to the gp120 V3 region principal neutralizing determinant of HIV-1MN in sera from Africa and the Americas. AIDS Res. Hum. Retroviruses 7, 831–838 (1991).

    Article  CAS  Google Scholar 

  30. Krachmarov, C. et al. Antibodies that are cross-reactive for human immunodeficiency virus type 1 clade a and clade B v3 domains are common in patient sera from Cameroon, but their neutralization activity is usually restricted by epitope masking. J. Virol. 79, 780–790 (2005).

    Article  CAS  Google Scholar 

  31. Krachmarov, C.P., Kayman, S.C., Honnen, W.J., Trochev, O. & Pinter, A. V3-specific polyclonal antibodies affinity purified from sera of infected humans effectively neutralize primary isolates of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 17, 1737–1748 (2001).

    Article  CAS  Google Scholar 

  32. Vogel, T., Kurth, R. & Norley, S. The majority of neutralizing Abs in HIV-1-infected patients recognize linear V3 loop sequences. Studies using HIV-1MN multiple antigenic peptides. J. Immunol. 153, 1895–1904 (1994).

    CAS  PubMed  Google Scholar 

  33. Zolla-Pazner, S. Improving on nature: focusing the immune response on the V3 loop. Hum. Antibodies 14, 69–72 (2005).

    Article  Google Scholar 

  34. Scheid, J.F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    Article  CAS  Google Scholar 

  35. Gorny, M. & Zolla-Pazner, S. Human monoclonal antibodies that neutralize HIV-1. in HIV Immunology and HIV/SIV Vaccine Databases 2003 (eds. Korber, B. et al.) 37–51 (Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2003).

  36. Gorny, M.K. et al. Preferential use of the VH5–51 gene segment by the human immune response to code for antibodies against the V3 ___domain of HIV-1. Mol. Immunol. 46, 917–926 (2009).

    Article  CAS  Google Scholar 

  37. Corti, D. et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5, e8805 (2010).

    Article  Google Scholar 

  38. Binley, J.M. et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J. Virol. 78, 13232–13252 (2004).

    Article  CAS  Google Scholar 

  39. Li, M. et al. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79, 10108–10125 (2005).

    Article  CAS  Google Scholar 

  40. Gorny, M.K. et al. Cross-clade neutralizing activity of human anti-V3 monoclonal antibodies derived from the cells of individuals infected with non-B clades of HIV-1. J. Virol. 80, 6865–6872 (2006).

    Article  CAS  Google Scholar 

  41. Pantophlet, R., Aguilar-Sino, R.O., Wrin, T., Cavacini, L.A. & Burton, D.R. Analysis of the neutralization breadth of the anti-V3 antibody F425–B4e8 and re-assessment of its epitope fine specificity by scanning mutagenesis. Virology 364, 441–453 (2007).

    Article  CAS  Google Scholar 

  42. Hioe, C.E. et al. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 5, e10254 (2010).

    Article  Google Scholar 

  43. Walker, L.M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    Article  CAS  Google Scholar 

  44. Javaherian, K. et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science 250, 1590–1593 (1990).

    Article  CAS  Google Scholar 

  45. Zolla-Pazner, S. et al. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 372, 233–246 (2008).

    Article  CAS  Google Scholar 

  46. Law, M., Cardoso, R.M., Wilson, I.A. & Burton, D.R. Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J. Virol. 81, 4272–4285 (2007).

    Article  CAS  Google Scholar 

  47. Zolla-Pazner, S. et al. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope. Virology 392, 82–93 (2009).

    Article  CAS  Google Scholar 

  48. Burke, B. et al. Neutralizing antibody responses to subtype B and C adjuvanted HIV envelope protein vaccination in rabbits. Virology 387, 147–156 (2009).

    Article  CAS  Google Scholar 

  49. Haynes, B.F. et al. Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology 345, 44–55 (2006).

    Article  CAS  Google Scholar 

  50. Gorny, M.K. et al. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J. Virol. 66, 7538–7542 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Conley, A.J. et al. Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447–52D. J. Virol. 68, 6994–7000 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, L. et al. Cross-clade recognition and neutralization by the V3 region from clade C human immunodeficiency virus-1 envelope. Vaccine 24, 4995–5002 (2006).

    Article  CAS  Google Scholar 

  53. Gorny, M.K. et al. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J. Virol. 79, 5232–5237 (2005).

    Article  CAS  Google Scholar 

  54. Honnen, W.J. et al. Type-specific epitopes targeted by monoclonal antibodies with exceptionally potent neutralizing activities for selected strains of human immunodeficiency virus type 1 map to a common region of the V2 ___domain of gp120 and differ only at single positions from the clade B consensus sequence. J. Virol. 81, 1424–1432 (2007).

    Article  CAS  Google Scholar 

  55. Zwart, G. et al. Immunodominance and antigenic variation of the principal neutralization ___domain of HIV-1. Virology 181, 481–489 (1991).

    Article  CAS  Google Scholar 

  56. Zolla-Pazner, S. et al. The cross-clade neutralizing activity of a human monoclonal antibody is determined by the GPGR V3 motif of HIV type 1. AIDS Res. Hum. Retroviruses 20, 1254–1258 (2004).

    Article  CAS  Google Scholar 

  57. Gorny, M.K. et al. The v3 loop is accessible on the surface of most human immunodeficiency virus type 1 primary isolates and serves as a neutralization epitope. J. Virol. 78, 2394–2404 (2004).

    Article  CAS  Google Scholar 

  58. Gorny, M.K. et al. Production of site-selected neutralizing human monoclonal antibodies against the third variable ___domain of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 88, 3238–3242 (1991).

    Article  CAS  Google Scholar 

  59. Hennecke, J., Sebbel, P. & Glockshuber, R. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J. Mol. Biol. 286, 1197–1215 (1999).

    Article  CAS  Google Scholar 

  60. Iwakura, M., Nakamura, T., Yamane, C. & Maki, K. Systematic circular permutation of an entire protein reveals essential folding elements. Nat. Struct. Biol. 7, 580–585 (2000).

    Article  CAS  Google Scholar 

  61. Nakamura, T. & Iwakura, M. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase. J. Biol. Chem. 274, 19041–19047 (1999).

    Article  CAS  Google Scholar 

  62. Pinter, A. Roles of HIV-1 Env variable regions in viral neutralization and vaccine development. Curr. HIV Res. 5, 542–553 (2007).

    Article  CAS  Google Scholar 

  63. Gorny, M.K., Gianakakos, V., Sharpe, S. & Zolla-Pazner, S. Generation of human monoclonal antibodies to human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 86, 1624–1628 (1989).

    Article  CAS  Google Scholar 

  64. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  65. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  66. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  67. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  68. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the ___location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  69. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  70. Hong, B.S. et al. Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J. Biol. Chem. 282, 27984–27993 (2007).

    Article  CAS  Google Scholar 

  71. Abagyan, R.A., Totrov, M. & Kuznetsov, D. ICM - A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Allison, formerly Press Secretary to Queen Elizabeth II, for providing the definition of the regions of the crown, as exemplified by the St. Edward's crown worn by Edward the Confessor, J. Sampson for assisting with the structure refinement and figure preparation, T. O'Neal and X.-H. Wang for antibody production and sequence analysis, staff members at beamlines X4A, X4C and X6A at the National Synchrotron Light Source for X-ray diffraction data collections and C. Hioe and N. Cowan for critical comments on the work and manuscript. This study was supported in part by the Bill and Melinda Gates Foundation, US National Institutes of Health grants AI36085 and HL59725, the Immunology Core of the New York University Center for AIDS Research (US National Institutes of Health grant AI27742) and by research funds from the US Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Contributions

X.J. and V.B. crystallized the complexes and collected the X-ray data; M.T. designed the V3 mimotope; C.W. produced the mAbs; T.C., M.K.G., S.Z.-P. and X.-P.K. designed the experiments; S.Z.-P. and X.-P.K. wrote the manuscript; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiang-Peng Kong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1a, 1b and 2 (PDF 13460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Burke, V., Totrov, M. et al. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17, 955–961 (2010). https://doi.org/10.1038/nsmb.1861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing