Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

Abstract

Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In contrast, the empty particles are markedly expanded and resemble elusive enterovirus-uncoating intermediates not previously characterized in atomic detail. Hydrophobic pockets in the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. These structures provide a model for enterovirus uncoating in which the VP1 GH loop acts as an adaptor-sensor for cellular receptor attachment, converting heterologous inputs to a generic uncoating mechanism, highlighting new opportunities for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structures.
Figure 2: Electron density.
Figure 3: Comparison of protomers from the mature virion and the expanded particle.
Figure 4: Pocket factor–binding site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Brown, B.A. & Pallansch, M.A. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res. 39, 195–205 (1995).

    Article  CAS  Google Scholar 

  2. McMinn, P.C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol. Rev. 26, 91–107 (2002).

    Article  CAS  Google Scholar 

  3. Wu, Y. et al. Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein Cell 1, 491–500 (2010).

    Article  CAS  Google Scholar 

  4. Basavappa, R. et al. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 resolution. Protein Sci. 3, 1651–1669 (1994).

    Article  CAS  Google Scholar 

  5. Curry, S. et al. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J. Virol. 71, 9743–9752 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tuthill, T.J., Groppelli, E., Hogle, J.M. & Rowlands, D.J. Picornaviruses. Curr. Top. Microbiol. Immunol. 343, 43–89 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ansardi, D.C. & Morrow, C.D. Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions. J. Virol. 69, 1540–1547 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobson, M.F. & Baltimore, D. Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein. J. Mol. Biol. 33, 369–378 (1968).

    Article  CAS  Google Scholar 

  9. Liu, C.C. et al. Purification and characterization of enterovirus 71 viral particles produced from Vero cells grown in a serum-free microcarrier bioreactor system. PLoS ONE 6, e20005 (2011).

    Article  CAS  Google Scholar 

  10. Guttman, N. & Baltimore, D. A plasma membrane component able to bind and alter virions of poliovirus type 1: studies on cell-free alteration using a simplified assay. Virology 82, 25–36 (1977).

    Article  CAS  Google Scholar 

  11. Marongiu, M.E., Pani, A., Corrias, M.V., Sau, M. & La Colla, P. Poliovirus morphogenesis. I. Identification of 80S dissociable particles and evidence for the artifactual production of procapsids. J. Virol. 39, 341–347 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Le Bouvier, G.L. The modification of poliovirus antigens by heat and ultraviolet light. Lancet 269, 1013–1016 (1955).

    Article  CAS  Google Scholar 

  13. Blondel, B., Akacem, O., Crainic, R., Couillin, P. & Horodniceanu, F. Detection by monoclonal antibodies of an antigenic determinant critical for poliovirus neutralization present on VP1 and on heat-inactivated virions. Virology 126, 707–710 (1983).

    Article  CAS  Google Scholar 

  14. Hogle, J.M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56, 677–702 (2002).

    Article  CAS  Google Scholar 

  15. Olson, N.H. et al. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90, 507–511 (1993).

    Article  CAS  Google Scholar 

  16. Rossmann, M.G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).

    Article  CAS  Google Scholar 

  17. Zhang, P. et al. Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc. Natl. Acad. Sci. USA 105, 18284–18289 (2008).

    Article  CAS  Google Scholar 

  18. Crowell, R.L. & Philipson, L. Specific alterations of coxsackievirus B3 eluted from HeLa cells. J. Virol. 8, 509–515 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15, 4282–4296 (1996).

    Article  CAS  Google Scholar 

  20. Lonberg-Holm, K., Gosser, L.B. & Kauer, J.C. Early alteration of poliovirus in infected cells and its specific inhibition. J. Gen. Virol. 27, 329–342 (1975).

    Article  CAS  Google Scholar 

  21. Fricks, C.E. & Hogle, J.M. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64, 1934–1945 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Greve, J.M. et al. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J. Virol. 65, 6015–6023 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bostina, M., Levy, H., Filman, D.J. & Hogle, J.M. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 85, 776–783 (2011).

    Article  CAS  Google Scholar 

  24. Bubeck, D. et al. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the ___location of an externalized polypeptide that binds to membranes. J. Virol. 79, 7745–7755 (2005).

    Article  CAS  Google Scholar 

  25. Levy, H.C., Bostina, M., Filman, D.J. & Hogle, J.M. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 84, 4426–4441 (2010).

    Article  CAS  Google Scholar 

  26. Hendry, E. et al. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7, 1527–1538 (1999).

    Article  CAS  Google Scholar 

  27. Belnap, D.M. et al. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 74, 1342–1354 (2000).

    Article  CAS  Google Scholar 

  28. Siebert, X. & Navaza, J. UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 65, 651–658 (2009).

    Article  CAS  Google Scholar 

  29. Filman, D.J. et al. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8, 1567–1579 (1989).

    Article  CAS  Google Scholar 

  30. Grant, R.A. et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 4, 784–797 (1994).

    Article  CAS  Google Scholar 

  31. Smith, T.J. et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233, 1286–1293 (1986).

    Article  CAS  Google Scholar 

  32. McSharry, J.J., Caliguiri, L.A. & Eggers, H.J. Inhibition of uncoating of poliovirus by arildone, a new antiviral drug. Virology 97, 307–315 (1979).

    Article  CAS  Google Scholar 

  33. Hogle, J.M., Chow, M. & Filman, D.J. Three-dimensional structure of poliovirus at 2.9Å resolution. Science 229, 1358–1365 (1985).

    Article  CAS  Google Scholar 

  34. Smyth, M. et al. Implications for viral uncoating from the structure of bovine enterovirus. Nat. Struct. Biol. 2, 224–231 (1995).

    Article  CAS  Google Scholar 

  35. Foo, D.G. et al. Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res. 125, 61–68 (2007).

    Article  CAS  Google Scholar 

  36. Liu, C.C. et al. Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine 29, 4362–4372 (2011).

    Article  CAS  Google Scholar 

  37. Yang, S.L., Chou, Y.T., Wu, C.N. & Ho, M.S. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J. Virol. 85, 11809–11820 (2011).

    Article  Google Scholar 

  38. Nishimura, Y. et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 15, 794–797 (2009).

    Article  CAS  Google Scholar 

  39. Yamayoshi, S. et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 15, 798–801 (2009).

    Article  CAS  Google Scholar 

  40. Rossmann, M.G., He, Y. & Kuhn, R.J. Picornavirus-receptor interactions. Trends Microbiol. 10, 324–331 (2002).

    Article  CAS  Google Scholar 

  41. He, Y. et al. Complexes of poliovirus serotypes with their common cellular receptor, CD155. J. Virol. 77, 4827–4835 (2003).

    Article  CAS  Google Scholar 

  42. Xiao, C. et al. The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 13, 1019–1033 (2005).

    Article  CAS  Google Scholar 

  43. Oliveira, M.A. et al. The structure of human rhinovirus 16. Structure 1, 51–68 (1993).

    Article  CAS  Google Scholar 

  44. Kim, S. et al. Conformational variability of a picornavirus capsid: pH-dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology 175, 176–190 (1990).

    Article  CAS  Google Scholar 

  45. McDermott, B.M. Jr., Rux, A.H., Eisenberg, R.J., Cohen, G.H. & Racaniello, V.R. Two distinct binding affinities of poliovirus for its cellular receptor. J. Biol. Chem. 275, 23089–23096 (2000).

    Article  CAS  Google Scholar 

  46. Giranda, V.L. et al. Acid-induced structural changes in human rhinovirus 14: possible role in uncoating. Proc. Natl. Acad. Sci. USA 89, 10213–10217 (1992).

    Article  CAS  Google Scholar 

  47. Davis, M.P. et al. Recombinant VP4 of human rhinovirus induces permeability in model membranes. J. Virol. 82, 4169–4174 (2008).

    Article  CAS  Google Scholar 

  48. Racaniello, V.R. Early events in poliovirus infection: virus-receptor interactions. Proc. Natl. Acad. Sci. USA 93, 11378–11381 (1996).

    Article  CAS  Google Scholar 

  49. Lin, J. et al. An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles. J. Virol. 85, 9974–9983 (2011).

    Article  CAS  Google Scholar 

  50. Kay, B.K., Williamson, M.P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    Article  CAS  Google Scholar 

  51. Stuart, D.I., Levine, M., Muirhead, H. & Stammers, D.K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6Å. J. Mol. Biol. 134, 109–142 (1979).

    Article  CAS  Google Scholar 

  52. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657 (2005).

    Article  Google Scholar 

  53. Axford, D. et al. In situ macromolecular crystallography using microbeams. Acta Crystallogr. D Biol. Crystallogr. (in the press).

  54. Borek, D., Cymborowski, M., Machius, M., Minor, W. & Otwinowski, Z. Diffraction data analysis in the presence of radiation damage. Acta Crystallogr. D Biol. Crystallogr. 66, 426–436 (2010).

    Article  CAS  Google Scholar 

  55. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  56. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  57. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  58. Laskowski, R.A., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sinovac Biotech Ltd. and the China National Biotech Group for providing virus samples, R. Gilbert for assistance with analytical ultracentrifugation, R. Esnouf for help with pocket analysis, J. Grimes for various help, especially with VEDA, and A. Kotecha for assistance with Diamond data collection. We also thank the Photon Factory, Japan, and the National Synchrotron Radiation Laboratory (NSRL), China. Work was supported by the National Major Project of Infectious Disease, the Ministry of Science and the Technology 973 Project (grant no. 2007CB914304). D.I.S., E.E.F. and T.S.W. are supported by the UK Medical Research Council, J.R. by the Wellcome Trust and C.P. by the Department for Environment, Food and Rural Affairs (DEFRA, UK).

Author information

Authors and Affiliations

Authors

Contributions

J.W., Z.H., W.Y. and X.S. prepared samples; X.W., W.P., X.L., Z.L., J.X., J.R., C.P., G.E., D.A., R.O., T.S.W., E.E.F. and D.I.S. performed research; W.P., X.W., Z.L., J.R., E.E.F. and D.I.S. analyzed data and, with D.J.R. and Z.R., wrote the manuscript, in discussion with J.W., Z.H., W.Y. and X.S.; all authors contributed to experimental design; Z.R. and D.I.S. supervised the project.

Corresponding authors

Correspondence to Junzhi Wang, David I Stuart, Elizabeth E Fry or Zihe Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 10558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Peng, W., Ren, J. et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19, 424–429 (2012). https://doi.org/10.1038/nsmb.2255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing