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Abstract
Studies in human genetics deal with a plethora of human genome sequencing data that are generated from specimens as well
as available on public domains. With the development of various bioinformatics applications, maintaining the productivity
of research, managing human genome data, and analyzing downstream data is essential. This review aims to guide struggling
researchers to process and analyze these large-scale genomic data to extract relevant information for improved downstream
analyses. Here, we discuss worldwide human genome projects that could be integrated into any data for improved analysis.
Obtaining human whole-genome sequencing data from both data stores and processes is costly; therefore, we focus on the
development of data format and software that manipulate whole-genome sequencing. Once the sequencing is complete and
its format and data processing tools are selected, a computational platform is required. For the platform, we describe a multi-
cloud strategy that balances between cost, performance, and customizability. A good quality published research relies on
data reproducibility to ensure quality results, reusability for applications to other datasets, as well as scalability for the future
increase of datasets. To solve these, we describe several key technologies developed in computer science, including
workflow engine. We also discuss the ethical guidelines inevitable for human genomic data analysis that differ from model
organisms. Finally, the future ideal perspective of data processing and analysis is summarized.

Introduction

In human genetics, advancements in next-generation
sequencing technology have enabled population-scale
sequencing from just one sequencer and allowed sharing
millions of human genome sequencing data from publicly
archived data including privacy-protected ones. With the

development of various bioinformatics tools, maintaining
the productivity of research, managing human genome data,
and analyzing downstream data is essential. This review
aims to guide researchers in human genetics to process and
analyze these large-scale genomic data to extract relevant
information for improved downstream analyses in their
specific research domains.

Here, in each section, we answer the five inevitable
questions for human genome data processing and analysis:
(i) what kind of large-scale human genome projects are
underway and available from data sharing? (ii) how to store
and analyze human genome data efficiently? (iii) what kind
of computational platforms are used to store and analyze
human genome data? (iv) how to maintain reproducibility,
portability, and scalability in genome data analysis, and
why is it important? (v) which policy should be followed to
handle human genome data?

In “What kind of large-scale human genome projects are
underway and available from data sharing?” section, we
inform large-scale human genomic studies in worldwide
and how the data produced in these studies are sharing. Lots
of effort and cost are inevitable for storing and processing
the human genomic data obtained by whole-genome
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sequencing (WGS). Therefore, in “How to store and ana-
lyze human genome data efficiently?” section, we focus on
the development of data format and software that manip-
ulate WGS including hardware-based acceleration.

Once the sequencing is complete and its format and data
processing tools are ready, a computational platform must
be selected, as discussed in “What kind of computational
platforms are used to store and analyze human genome
data?” section. For the platform, we recommend a multi-
cloud strategy for balancing cost, performance, and custo-
mizability. A high-quality published research relies on data
reproducibility to ensure quality results, reusability for
applications to other datasets, as well as scalability for the
future increase of datasets. “How to maintain reproduci-
bility, portability, and scalability in genome data analysis,
and why is it important?” section describes the method to
solve these demands using several key technologies, such as
container technology, workflow description languages, and
workflow engines. The ethical guidelines inevitable for
human genomic data analysis that differ from model
organisms are discussed in “Which policy should be fol-
lowed to handle human genome data?” section. Finally, the
future ideal perspective of human genome data processing
and analysis in human genetics are discussed.

What kind of large-scale human genome
projects are underway and available from
data sharing?

Several early collaborative large-scale human genome
analyses have been conducted worldwide. The Human
Genome Project (HGP) [1] is one of the largest and most
successful international collaborations in genome science.
Researchers in institutes throughout the world contributed
to sequence all the bases in the human genome and
assembled them to construct one human reference assem-
bly, followed by attempts to catalog genes hidden in the
human reference assembly. The assembly is the major
achievement of HGP, and the reference genome data is
freely accessible from a very early phase. The Genome
Reference Consortium (GRC) has taken over updating and
maintaining the assembly of human reference genome, and
the updated versions of the human genome assembly are
commonly used by researchers around the world. Nowa-
days, all researchers depend on the coordinate of the human
reference assembly from GRC. Therefore, the HGP study
initially exemplified the importance of data sharing in
genome science.

After the great success of HGP, the human genome study
has shifted toward studying the diversity of human gen-
omes. The HapMap Project [2] was one of the early large-
scale population genomics studies used to systematically

analyze individual genotypes on a population scale. In this
project, single nucleotide polymorphisms (SNPs) repre-
senting human genetic diversity were discovered and gen-
otyped using SNP genotyping array technology, which was
popular at the time. In phase 1 study, the project completed
genome-wide genotyping of 269 individuals from 4 popu-
lations. Finally, the analysis was extended to 1184 indivi-
duals from 11 populations in phase 3 study. This was the
first study that revealed the structure of linkage dis-
equilibrium in human genome across the populations. The
International 1000 Genomes Project is a successor to the
HapMap project. This study aimed to comprehensively
elucidate the genetic diversity of human populations by
utilizing next-generation sequencers, which was being put
to practical use at the time. In phase 1 study, whole gen-
omes of 1092 individuals from 14 populations were
sequenced by next-generation sequencers. The analysis
eventually expanded to 2,504 individuals from 26 popula-
tions in phase 3 study [3], and then continued to incorporate
new technologies, such as 3rd generation long leads
sequencers [4]. Importantly, all data and derivatives from
the above-mentioned genome studies are available with
open access data sharing policy.

Therefore, these data are not only used as summary
statistics, e.g., a catalog of allele frequencies of SNPs in
populations, but also used as individual-level information,
e.g., a whole-genome reference panel, which contains
individual genotype information for whole-genome regions,
especially useful for genotype imputation to SNP geno-
typing arrays, e.g., Japonica Array [5]. Open access policy
also has the advantage of being used by many researchers.
The data from the International 1000 Genomes Project has
contributed to the development of a variety of NGS tools.
Currently, common tools for NGS data analysis, e.g., bwa
[6] and de-facto standard formats, e.g., Sequence Align-
ment/Map (SAM), BAM, and VCF [7], have been devel-
oped in the International 1000 Genomes Project. In
addition, the genomic data are widely distributed under the
open access policy though various computational platforms,
e.g., high-performance computing (HPC) system of the
National Institute of Genetics (NIG) in Japan and public
cloud services. These efforts also ease the reusability by
researchers.

Several present large-scale human genome analyses have
shifted toward understanding the relationship between
genotypes and phenotypes, e.g., diseases and traits. Of
these, cohort studies with biobanking play a key role, and
many of these are prospective cohort studies of residents of
a specific region or country (Table 1) [8–28]. The DNA
materials in the biobank allow us to measure the status of
the entire genome sequence, e.g., SNP genotyping array or
WGS, under the informed consent of participants. The
genomic information and phenotypes collected in the cohort
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study have enabled the large-scale association studies
between genotypes and phenotypes. Compared with the
former International 1000 Genomes Project, trait informa-
tion for participants is available, and many studies have
shared their individual genomic data under controlled
access to protect the individual’s privacy. Notably, varying
policies to data sharing for controlled access have an impact
on collaborative studies across regions or countries. UK
Biobank with nearly 500,000 participants distributes their
data (including individual genomic data) to the approved
research studies, and these distributed data can be analyzed
on the computational platform of each study group while
ensuring security. Instead, many studies have not adopted
the flexible data sharing policy like UK Biobank and cur-
rently hinder the reusability and collaboration of research-
ers. Sharing the summary statistics is still the predominant
method in international collaborations, and many of the
GWAS meta-analyses have been successful in this way.　
However, there are still barriers to sharing data at the
individual level, which hinders collaborative research that
requires advanced analysis. Discussions on how to share
data in a flexible manner while protecting individual privacy
should continue to take place. One promising direction
might be the recently proposed cloud-based solution from
UK Biobank (https://www.ukbiobank.ac.uk/2020/08/uk-
biobank-creates-cloud-based-health-data-analysis-platform-
to-unleash-the-imaginations-of-the-worlds-best-scientific-
minds/)

How to store and analyze human genome
data efficiently?

The sequencing data once generated, must be stored in a
specific format. In the past, various sequencing formats
have been proposed, e.g., CSFASTA/QUAL format. For-
tunately, the current de-facto standard is the fastq format,
which is a text-based format with sequencing bases and the
quality score for each base (base quality score, BQS). The
definitions of BQS range are different among vendors and/
or versions, e.g., the quality score ranges from 33 (corre-
sponds to! in the ascii code table) to 73 (I) in Sanger format
and 64 (@) to 104 (h) in the Solexa format. In the early days
of NGS technology, problems due to variations were not
speculated. The Sequencing Read Archive (SRA) in the
National Center for Biotechnology Information (NCBI) is
responsible for storing raw sequencing data in the United
States (US). For reusability for users, normalized data of the
BQS (quality adjusted to the standardized format) are also
stored and distributed from SRA. The data are now shifting
toward public clouds, i.e., Google Cloud Platform (GCP)
and Amazon Web Service (AWS). Users have no end-user
charges for accessing cloud SRA data in the cloud, whether

in hot or cold storage when the user is accessing the data
from the same cloud region (more details in https://www.
ncbi.nlm.nih.gov/sra/docs/sra-cloud-access-costs/).

The process of storing original sequencing data and
handling BQS in the sequenced reads to reduce sequencing
data size in clouds are being studied (https://grants.nih.gov/
grants/guide/notice-files/NOT-OD-20-108.html). The total
size in SRA was 36 petabytes in 2019 and major parts were
consumed by the BQS. A solution is to downsample the
BQS by binning. Without the BQS, the size of a typical
SRA file reduces by 60–70%. Thus, another extreme opi-
nion is to remove the BQS for the standard dataset in
clouds.

The sequenced data with the fastq format is typically
aligned to the human reference assembly, usually Genome
Reference Consortium Human Build 38 (GRCh38) or
GRCh37, by using bioinformatics tools, such as bwa [6]
and bowtie2 [29]. The de-facto standard output format is the
SAM text format, which stores each fastq read with the
chromosomal position and the alignment status, e.g., mis-
matches to the bases in the reference sequences to the
reference coordinate (if a fastq read is not located in the
reference, the fastq read is stored in the unmapped section)
(https://samtools.github.io/hts-specs/SAMv1.pdf). Com-
monly, this text format was stored as the BGZF compres-
sion format (extended format from a standard gzip fromat),
called BAM format (https://samtools.github.io/hts-specs/
SAMv1.pdf). Recently, the European Bioinformatics Insti-
tute (EBI) proposed the reference sequence, e.g., GRCh37
and GRCh38, based compression format called CRAM
[30]. Contrary to BAM, the CRAM has two compression
schemes, lossless or lossy format, i.e., downsample the BQS
and offering 40–50% space saving over the alternative
BAM format with the lossless option (http://www.htslib.
org/benchmarks/CRAM.html). The dataset for the Interna-
tional 1000 Genomes Project can be downloaded in the
BAM format (in total 56.4 terabyte for low-coverage phase
3 dataset aligned to GRCh37 reference assembly) as well as
lossy CRAM format with 8-bin compression scheme to
reduce the total download size (https://www.internationa
lgenome.org/category/cram/) compared to the BAM format
(in total 18.2 terabyte for the same dataset aligned to
GRCh38DH reference assembly).

The aligned sequenced data are then called variants by
tools to detect variants, e.g., Genome Analysis ToolKit
(GATK) [31, 32] and Google’s DeepVariant for germline
variant call [33] and MuTect2 for somatic variant call [34].

The alignment and variant call for thousands of WGS
dataset require adequate computational resources.
Therefore, to reduce the computation time for these WGS
analyses, several hardware or software-based solutions
have been proposed [35]. The NVIDIA Clara™
Parabricks developed the Graphics Processing Unit
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(GPU)-accelerated tools (https://www.parabricks.com/).
The Illumina DRAGEN™ Platform uses highly reconfi-
gurable Field-Programmable Gate Array technology
(FPGA) to provide the other hardware-accelerated
implementations of genomic analysis algorithms [36].
The Sentieon analysis pipelines implement software-
based optimization algorithms and boost the calculation
performance compared with the native tools, such as
GATK and MuTect2 [37]. These platforms are available
both on the on-premises and on the public clouds. The
storage cost in public cloud for clinical sequence has been
discussed by Krumm et al. [38].

What kind of computational platforms are
used to store and analyze human genome
data?

For effective genome data sharing and analysis, not only the
security and legal compliance issues should be addressed,
but also researchers need to deal with the recent data
explosions and be familiar with the large-scale computa-
tional and networking infrastructures.

As a solution that addresses both issues, commercial
cloud platforms have been gaining attention recently. The
world-leading cloud platforms, e.g., GCP, AWS, and
Microsoft Azure, are achieving and maintaining compliance
with complex regulatory requirements, frameworks, and
guidelines. This does not mean that the organization pro-
viding some services on the cloud platforms will be auto-
matically certified under those regulations; however,
utilizing cloud platforms can make it easier for researchers
to meet the compliance [39–43].

In addition to the privacy compliance issue, as a con-
sequence of recent data explosion in GWAS and NGS
research [44], copying data to the researcher’s on-premise
servers has become increasingly difficult since projects
utilizing thousands of genomes need to operate on several
hundred terabytes of data, which could take months to
download. Therefore, for large-scale data analysis, data
visiting strategy has emerged as a realistic solution where
instead of bringing data to researchers, the researchers
operate on the data where it resides, e.g., data of Inter-
national 1000 Genomes Project are stored on AWS and
NIG as described. The data visiting strategy can be
implemented naturally on commercial cloud platforms.

Broad Institute provides a GWAS and NGS data analysis
pipeline execution environment called Terra on GCP [45].
Terra allows researchers to execute many analysis work-
flows on the workflow engine called Cromwell, and it
also offers a workflow reuse and exchange environment
for research reproducibility, without taking the ownership
of the computational infrastructure and its management.

Terra and Cromwell on the GCP are one of the best starting
points for middle-scale data analysis projects.

In addition, since the distributed nature of the cloud is
especially efficient for large collaborative projects, many
NGS research projects, in particular, the reanalysis of large-
scale archived datasets and large genomics collaborations
funded by the US agents, are utilizing the cloud computing
platforms as their primary computational infrastructures
[46, 47].

Especially, NCBI in National Institutes of Health (NIH)
is now trying to move the computational infrastructure of
the comprehensive DNA database toward commercial cloud
platforms. The International Nucleotide Sequence Database
Collaboration (INSDC) that operates among The DNA Data
Bank of Japan (DDBJ), The European Bioinformatics
Institute (EMBL-EBI), and NCBI has been developing
comprehensive DNA sequence databases via DRA, ERA,
and SRA in each region. NCBI is moving SRA data on the
GCP and AWS platforms (each about 14PB; https://
ncbiinsights.ncbi.nlm.nih.gov/2020/02/24/sra-cloud/) as
part of the NIH Science and Technology Research Infra-
structure for Discovery, Experimentation, and Sustainability
(STRIDES) Initiative [48].

On the other hand, cloud computing also has some
intrinsic real-world problems, such as vendor-lock in,
unpredictable cost of computing, networking and data sto-
rage, inconsistent security, and multiple management tools.

According to the investigation in July 2018 [49, 50],
>80% of companies around the world describe their cloud
strategy as multi-cloud, commonly defined as using multi-
ple public and private clouds for different application
workloads. In general, multi-cloud strategy is used for
making balances between costs, performances, and custo-
mizability. Again, it poses challenges to provide consistent
infrastructure and easy operations across multiple-cloud
vendors and on-premise computers. Several cutting-edge
computer technologies can be used for these purposes, as
described later, especially the Linux container technologies
and its federation on some dedicated management middle-
ware including Virtual Cloud Provider (VCP) developed by
the National Institute of Information (NII) [51], Kubernetes
(https://kubernetes.io/), and Apache Mesos (http://mesos.
apache.org/).

In the INSDC, Europe and Japan can be classified into
the multi-cloud strategy. Computational infrastructure,
which supports the analysis and development of these huge
databases, is also massive. In the DDBJ, the NIG super-
computer system is offered to medical and biological
researchers who require large-scale genome data analysis.
The current system (which started operation in 2019) is
equipped with about 14,000 cores CPUs with the peak
performance of 1.1 PFLOPS (CPU: 599.8 TFLOPS, GPU
499.2 TFLOPS); the total storage capacity is 43.8 petabyte,
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and each component is interconnected with high-speed
network (100 Gbps InfiniBand) suitable for large-scale data
analysis [52].

The NIG supercomputer provides 16 GPU nodes that
allow genome analysis tools, including GATK [32] and
Mutect2 [34], to accelerate more than one order, by using a
dedicated analysis system, e.g., Parabricks genome pipeline.
It also offers large-scale shared memory (12 terabyte in
total) computer mainly used for de novo genome assembly
[52].

The security and legal compliance for the personal gen-
ome analysis environment of the NIG supercomputer is
supervised by the National Bioscience Database Center
(NBDC) in the Japan Science and Technology Agency
(JST), and the NIG supercomputer is designated as avail-
able server outside of the affiliated organization (“Off-pre-
mise-server”) in Japan (https://humandbs.biosciencedbc.jp/
en/off-premise-server). The system is connected to the
commercial cloud vendors including AWS via the SINET5
network system hosted by NII, Japan [53], and on this
platform, we have developed a multi-cloud infrastructure
with the cooperation among National Institute of Informa-
tion, Hokkaido University, Tokyo Institute of Technology,
Kyushu University, and National Institute of Genetics.

How to maintain reproducibility, portability,
and scalability in genome data analysis, and
why is it important?

Reproducibility of the data analysis results is one of the
main concerns in the biomedical field [51, 54] since the
version of applications and configuration to applications
affect the results. To maintain the reproducibility of the
experimental results, in publication, it has become common
to describe each data processing, e.g., version of tools and
configuration to tools, steps of these data processing, and
dataset used in the data analysis (e.g., sequencing data
and phenotypes). These descriptions allow researchers to re-
construct workflows (also known as pipelines), consisting
of a sequence of data analysis applications, in their
laboratories. There are several solutions to denote work-
flows. The naive workflows are constructed with bare pro-
gramming languages, e.g., Java or Python, or software build
systems, e.g., GNU make (https://www.gnu.org/software/
make/) or SCons (https://scons.org/). Usually, researchers
deploy the applications by downloading and/or building the
source codes by themselves. However, this naive workflow
sometimes causes several limitations. First, deploying
applications to every computing resource is difficult
because of library dependencies, including system libraries,
as well as the versions of compilers or interpreters are to be
considered. If the tool still deploys, the libraries of different

versions might affect the result of data analysis. Second,
efficiently executing workflows on different computing
resources is difficult because the computational node of data
processing is sometimes hard-coded in the programming
language. For example, a workflow written in GNU make
cannot utilize several computing nodes simultaneously,
except for combination to batch job systems, because the
tool supports the parallel execution solely in a single
computational node. In modern data analysis, researchers
can solve these limitations by combining key technologies
in computer science, the container technology, workflow
description languages, and workflow engines (also known
as Scientific Workflow Management Systems (SWfMS) or
Workflow Management Systems (WMS)). The container
technology allows deploying the same tools including its
library dependencies to different computational platforms
while preserving the computational performance. Workflow
description languages and workflow engines enable
researchers to separate the description of workflow and the
physical computational platform that processes the
workflow.

Containers

Containers have been commonly used to publish applica-
tions [55] as well as provide an isolated computing envir-
onment, e.g., virtual machine [56]. Although several
container engines are proposed (https://opencontainers.org/)
[57, 58], essential concepts for users are the same: a con-
tainer image, a container runtime, and a container registry
(many literatures omit the words “image,” “runtime,” and
“instance” (explained later) and simply call them “con-
tainer”), as described below. First, a container image, e.g.,
Docker image, OCI image (a variant of Docker image)
(https://opencontainers.org/), and SIF image [57], is a
package that contains all the dependencies including system
libraries to execute the application. Each container image is
identified by its container image ID, e.g., “6b362a9f73eb,”
or the pair of container name and its tag name, e.g., “docker/
whalesay:latest” (“docker/whalesay” is the container name
and “latest” is the tag name). A container image can be built
from the script named “Dockerfile” (for Docker images) or
Singularity definition file (for SIF images). Users can build
almost the same container image from a given script. Note
that only providing the script file is not enough to build
completely the same container image because the script can
refer to external resources. The strictest solution to use the
same container image is to refer to the unique image by
specifying the same container ID that is already published
in the container registry, which is explained later. Second, a
container runtime, e.g., Docker engine [59] and Singularity
[57], is a system to execute tools in a given container image.
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An executed process using a container image is called a
container instance. A container runtime provides an isolated
file system using the container image to the container
instance as if it is dedicated to the host. By using resource
isolation features, e.g., namespace in Linux kernel, rather
than hardware emulation, e.g., virtual machines, a container
runtime can execute a container instance as efficiently as the
host process [60]. In the bioinformatics field, Docker engine
and Singularity are widely used for data analysis applica-
tions. Docker engine is a container runtime that is widely
used for building data analysis environments [51, 61] as
well as for building educational applications [62]. It sup-
ports Docker images and OCI images. Although it required
root privileges for any container manipulations in older
versions, it experimentally supports executing container
images in user privileges since version 19.03. Singularity is
another container runtime, especially for HPC fields. It
supports SIF images as well as Docker images. It only
requires user privileges and therefore some HPC systems
have better support for Singularity, e.g., NIG [52]. Finally, a
container registry, e.g., DockerHub (https://hub.docker.
com/), Quay.io (https://quay.io/), and SingularityHub
(https://singularity-hub.org/), is a repository that stores and
publishes container images. Container images built by other
registry users can be downloaded from a container registry;
researchers can publish their container images in the con-
tainer registry. However, when using container images built
by other registry users, it is important to verify that they do
not contain security vulnerabilities. Fortunately, some
images are already verified by the container registry pro-
vider or by the community. For example, DockerHub pro-
vides verified images for well-known Linux distributions,
programming language environments, and tools. Another
example is BioContainers [55], which provides bioinfor-
matics applications that are verified by the BioContainers
community. Other types of container images can be verified
by checking the script such as “Dockerfile” or using
security scanning tools for containers such as Docker-
Bench-for-Security (https://github.com/docker/docker-
bench-security), Clair (https://github.com/quay/clair), and
Trivy (https://github.com/aquasecurity/trivy).

Workflow engines, workflow description
languages, and their ecosystems

A workflow engine is a system to execute workflows and
can encapsulate how a given workflow is controlled and
executed, e.g., the decision of the order of executions of
applications and the re-execution of the failed execution
steps, and how a given workflow is executed on the dif-
ferent computing resources where a given workflow is
executed (e.g., cloud computing resources and computing

nodes in batch job schedulers). Using a workflow engine,
users can execute workflows on various computing
resources without changing workflow definitions. A work-
flow description language describes applications and
workflow definitions for workflow engines. A tool
description includes input parameters, output parameters, a
container image for execution, and an execution command,
whereas a workflow description includes connections
between applications and workflows. By using workflow
description languages, users can construct workflows
without taking care of the execution details of workflows
such as how and where workflows are executed.

However, it is difficult for users to choose appropriate
workflow engines from existing 280+ workflow engines
(https://github.com/common-workflow-language/common-
workflow-language/wiki/Existing-Workflow-systems) that
satisfy each demand. Users have to convert workflow
definitions to port it to other workflow engines manually in
general because each workflow engine supports only one or
a few workflow description languages; as described later,
using the Common Workflow Language (CWL) or the
Workflow Description Language (WDL) is a good choice to
keep portability between workflow engines. Furthermore,
they have differences in the supported computing resources,
ecosystems, e.g., workflow editors, visualizers, reusable
tools, and workflow repositories. To help users choose
appropriate workflow engines, we briefly introduce several
workflow engines and workflow description languages,
including their ecosystems. For more details, see [63] and
literature for each engine and language.

The Galaxy [64] is a workflow manager with a web user
interface and enables users to execute workflows without
using a command-line interface. It also provides a GUI
workflow editor, tool repository, execution history of
workflows, and many other features. It has been mainly
developed by Penn State University and Johns Hopkins
University since 2005. Although users can build their own
Galaxy server, there is another choice to use public Galaxy
servers that service commonly used applications and refer-
ence genomes (https://galaxyproject.org/use/). We can learn
how to use Galaxy from official training materials (https://
training.galaxyproject.org/training-material/).

The Nextflow [65] is another workflow engine as well as
a domain-specific language (DSL). Nextflow has a Groovy-
based DSL, as shown in Fig. 1a, and is easy to understand if
users are already familiar with some programming lan-
guages. Nextflow also has the GUI frontend [66]. It has
been developed by the Comparative Bioinformatics group
at the Barcelona Centre for Genomic Regulation (CRG)
since 2013. A curated set of tool and workflow descriptions
can be found at nf-core [56] and DockStore [67].

The WDL (https://openwdl.org/) is a community-
driven specification and is supported by several
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workflow engines, e.g., Cromwell (https://github.com/
broadinstitute/cromwell), MiniWDL (https://github.com/
chanzuckerberg/miniwdl), and dxWDL (https://github.
com/dnanexus/dxWDL). WDL was first developed by
the Broad Institute and is currently developed by the
OpenWDL community (see Fig. 1b). It has been officially
supported on Terra platform by Broad Institute [45]. We
can find a curated set of tool and workflow descriptions at
BioWDL (https://github.com/biowdl) and DockStore [67].
Note that this paper uses the words “WDL” and capita-
lized “Workflow Description Language” to indicate the
language by OpenWDL community but some literatures
use the same words to indicate a language to describe
workflows.

The CWL (https://w3id.org/cwl/v1.2/) is another
community-driven specification and has superior portability
between workflow engines. It has been supported by over
14 workflow engines, including alpha stage (https://www.
commonwl.org/#Implementations). Although the YAML-
based syntax (see Fig. 1c) makes it difficult to understand,
there have been many systems that assist to read/write tool
and workflow definitions, e.g., GUI editor like Rabix
Composer (https://rabix.io/) (see Fig. 2) and converters
from/to other languages (https://www.commonwl.org/
#Converters_and_code_generators). A curated set of tool
and workflow descriptions can be found at Common
Workflow Library (https://github.com/common-workflow-
library) and DockStore [67].

Advantages of using modern data analysis
compared with traditional approaches

By switching from naive workflow to the modern work-
flow, users can obtain reproducibility, portability, and

scalability for large-scale data analysis. First, the con-
tainer technology allows reproducibility of the published
results. In a naive workflow, when an application is
installed on the HPC system by an administrator, then the
administrator is responsible for proper working of the
application. When the application is installed on the user’s
computational environment, then the person who installed
it, usually, the user, has the responsibility. However, it is
sometimes impossible to install the same version of
application on user’s environment that is installed on HPC
systems due to version conflicts between several HPC
systems, for example. Conversely, in the case of modern
workflow, the maintainer of the corresponding container
images for the application has the responsibility. There-
fore, a user can use the same application between HPC
systems and his or her computational environment by
using the same container image. Second, the combination
of a workflow description language and workflow engines
allows the portability to different computational envir-
onments and the scalability of data analysis that adapts to
the increase of the size of computational resources. Naive
workflows are described in programming languages or
build tools. Therefore, it is nearly impossible to execute
workflows on different types of computing resources
without modifying the workflow description. In the
modern workflow, the difference in computing resources
is encapsulated by the workflow engines. For example, a
workflow description once written in CWL can be exe-
cuted on local machines, computing resources on cloud
platforms, and computing nodes of batch job schedulers.
Terra and Cromwell on the GCP are one of the solutions
for scalability with a modern approach. Notably, to work
modern workflows on multi-platforms, the administrator
of each platform needs to properly install container run-
times, e.g., docker engine and singularity.

Fig. 1 The simple hello world example by using workflow description languages: (a) Nextflow, (b) WDL, and (c) CWL
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Instruction to write a workflow using CWL

This section shows an example of how to write a workflow
that uses Docker engine in CWL. We can apply the similar
idea for other container runtime and workflow description
languages. Here, the workflow in Fig. 3 implements RNA-
Seq data processing operations; (i) the workflow takes three
inputs; a fasta file with target transcript sequences, the name
of generated index, and list of RNA-Seq files with fastq
format; (ii) kallisto [68] indexes the fasta file; (iii) kallisto
processes the list of fastq files and generates the transcript
abundance information.

There are three steps to write a workflow: containerize
tools, write tool descriptions, and write a workflow
description. Before applying each step, check that a con-
tainerized tool, a tool description, or a workflow description
is not published by the community. If the workflow is
already published, we recommend using the published one.

First, we search for an appropriate base image for the tool
to be containerized. For example, using “continuumio/
miniconda3:4.8.2” published in DockerHub can be an
appropriate image for tools in Bioconda. Note that base
images with the “latest” tag are not appropriate to maintain
reproducibility because its contents vary when the new
version is released. Once we choose a base image, we can

write a “Dockerfile” to extend a base image. In the simplest
case, it can be done by using the “FROM” instruction to
specify the base image and the “RUN” instruction to specify
the installation commands as shown in Fig. 3a. For more
details of “Dockerfile”, see the official document (https://
docs.docker.com/engine/reference/builder/).

Second, we write a tool description for each tool in the
workflow. As shown in Fig. 3b, c, it specifies the list of
input parameters (“inputs” field), output parameters (“out-
puts” field), a container name (“dockerPull” field), and how
the execution command is constructed (“baseCommand”
and “arguments” fields). In Fig. 3b, “$(inputs.index_name)”
and “$(inputs.fasta)” in the “arguments” fields are instan-
tiated by the values of “index_name” and “fasta” para-
meters, respectively. A file name of “index” parameter in
the “outputs” field is captured by using the value of
“index_name” parameter.

In Fig. 3c, “$(runtime.outdir)” in the “arguments” and
“glob” fields is instantiated by the output directory name
and therefore the “outdir” parameter in the “outputs” field
captures the directory that contains all the output files of the
“kallisto quant” command.

Finally, we can write a workflow description by referring
to tool descriptions as shown Fig. 3d. In the case of CWL,
we refer to the external tool definition in the “run” field and

Fig. 2 Example of the GUI editor of workflow engine; snapshot of the Radix Composer. The flow shows an RNA-Seq pipeline
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refer to the output parameters in other steps by using “other-
step/output-parameter” notation. A workflow engine can
recognize the dependencies of input and output parameters
for each step and therefore it can execute the ‘kallisto-
quant‘ step before executing the ‘kallisto-index‘ step with-
out specifying the order of executions.

Which policy should be followed to handle
human genome data?

In general, personal data protection law has two closely
related aims: (a) protection of privacy and security during
the data processing and (b) establish acceptable rules for
data transfer across societies or countries [69]. The trans-
border restriction is necessary to prevent the data protec-
tions from being circumvented by simply moving the data
to the country of other jurisdictions [39]. At the same time,
the transborder restriction rule must find the balance
between the protection of privacy and the benefits of data
sharing that affects a variety of activities including science
and commerce [39]. Under this background, the European
Union (EU)’s General Data Protection Regulation (GDPR)

came into force in May 2018 as the successor of the EU
Data Protection Directive (1995) (https://gdpr-info.eu/)
[40]. The GDPR facilitates the free movement of data
among the Member States of the EU, and transferring per-
sonal data to a country outside the EU is allowed only when
one of the conditions laid out in Chapter V of the GDPR is
fulfilled. These include the following: (a) The destination
has been the subject of an adequacy decision, (b) Binding
corporate rules (BCRs), and (c) Standard data protection
clauses (SDPC) (https://gdpr-info.eu/) [40]. Japan and the
EU agreed to recognize each other’s data protection regimes
as providing adequate protections for personal data in July
2018, and the framework for mutual and smooth transfer of
personal data between Japan and European Union came into
force on 23 January 2019 [40, 70, 71]. In the Japanese
regime, “Act on the Protection of Personal Informa-
tion” (http://www.japaneselawtranslation.go.jp/law/detail/?
id=2781&vm=2&re=02) is one of the central parts of the
personal data protection regime [70], and under this fra-
mework, “Cabinet Order to Enforce the Act on the Pro-
tection of Personal Information” prescribes personal
genome data as a kind of an individual identification
code. Associated with this law, and in order to facilitate

Fig. 3 Example of “Dockerfile”, a tool description, and a workflow
description of kallisto workflow in CWL. a “Dockerfile” to build an
RNA-Seq fastq data processing tool kallisto. b A CWL sub-workflow
used in d. The workflow creates the index file for kallisto of the target

transcript sequences with fasta format. c CWL sub-workflow used in
d. The workflow processes RNA-Seq fastq files to generate their
abundance of transcripts. d The main CWL workflow operates the sub-
workflow in b and c
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computerization and data sharing [72, 73], three ministries
published two security guidelines, where the first guideline
is for a medical institution, and the other guideline is for
companies operating on healthcare information:

1. Security Guidelines for Medical Information Systems,
5th Edition (May, 2017). Ministry of Health, Labor
and Welfare (MHLW).

2. Guidelines for Safety Management of Medical
Information by Providers of Information Systems
and Services Handling Medical Information (August,
2020), the Ministry of Internal Affairs and Commu-
nications (MIC) and the Ministry of Economy, Trade
and Industry (METI).

The “Security Guidelines for Medical Information Sys-
tems” describes technical details of security counter-
measures that should be considered in medical institutes,
organizational management, physical security, human
resources security, computer and network security, disaster
recovery, information lifecycle management, and con-
sideration on data exchange. In addition to the technical
details, this guideline also determines responsibility division
points between ICT users (i.e., medical institutions) and
ICT providers. Here, it should be noted that the text
“Chapter IV: Obligations etc. of a Personal Information
Handling Business Operator” of the “Act on the Protection
of Personal Information” governs only the private organi-
zations of Japan. Government or public sector organizations
of Japan are not subject to Chapter IV. They are governed
by other series of laws including “Act on the Protection of
Personal Information Held by Administrative Organs,” “Act
on General Rules for Incorporated Administrative Agency,”
and bylaws of local public organizations. Consequently, the
GDPR adequacy decision to Japan is implied to be limited
to the private sector of Japan, and the government and the
public sectors need data transfer with subject to appropriate
safeguards (e.g., Art.46 GDPR). In the US, the following
laws govern the healthcare and genome data sharing
operations: the Federal Policy for the Protection of Human
Subjects (known as the “Common Rule”), the Health
Insurance Portability and Accountability Act (HIPAA),
Health Information Technology for Economic and Clinical
Health Act (HITECH), and Health Information Trust Alli-
ance Common Security Framework (HITRUST CSF) [74].
However, the US lacks federal data privacy law, and the
above US laws governing health care data sharing do not
impose different requirements on transborder data sharing,
even if it is transferred to third countries, compared with
data sharing among researchers or service providers inside
the US [74]. Consequently, the European Commission
cannot grant the US an adequacy decision, and it is worth
noting that transfer personal data needs to be subjected to

appropriate safeguards, e.g., Art.46 GDPR. To remedy this
situation, a data transfer mechanism called the EU–US
Privacy Shield was adopted by the European Commission
in July 2016 and became available on August 1, 2016 [41].
However, we need to be cautious with the unstable situa-
tion. On July 16, 2020, the Court of Justice of the European
Union issued a judgment declaring as “invalid” on the
adequacy of the protection provided by the EU-U.S. Privacy
Shield (https://www.privacyshield.gov/Program-Overview).

Conclusion and future direction

Twenty years have passed since the release of human refer-
ence genome assembly. With the advancement of the
sequencing technology, hundreds and thousands of whole-
genome sequencing can be obtained in single institute within
a short period. In addition, WGS data analysis applications,
including hardware and software-based solutions, would
accelerate to allow large-scale data analysis on multi-cloud by
integrating their dataset to available human genome data with
population scale via their data sharing policy. The data ana-
lyses would also be built on modern workflow engines and
easily ensure the reproducibility of publication. The work-
flows on publications are also shared in the research com-
munity. With the portability, the pipeline would be reused in
other dataset on different computational environments. The
pipeline would also be scaled to a large dataset with the
functionality of scalability.

Therefore, in human genetics, from the outputs of the
workflow engines to the large-scale human genome data,
more domain-specific downstream data interpretations
would be demanded from both the expert-knowledge driven
approach by the domain knowledge from the medical and
biological professionals and the data-driven approach from
computer science, e.g., artificial intelligence.
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