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Delineating the dynamic evolution from preneoplasia to
invasive lung adenocarcinoma by integrating single-cell RNA
sequencing and spatial transcriptomics
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The cell ecology and spatial niche implicated in the dynamic and sequential process of lung adenocarcinoma (LUAD) from
adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) have not
yet been elucidated. Here, we performed an integrative analysis of single-cell RNA sequencing (scRNA-seq) and spatial
transcriptomics (ST) to characterize the cell atlas of the invasion trajectory of LUAD. We found that the UBE2C+ cancer cell
subpopulation constantly increased during the invasive process of LUAD with remarkable elevation in IAC, and its spatial
distribution was in the peripheral cancer region of the IAC, representing a more malignant phenotype. Furthermore, analysis of the
TME cell type subpopulation showed a constant decrease in mast cells, monocytes, and lymphatic endothelial cells, which were
implicated in the whole process of invasive LUAD, accompanied by an increase in NK cells and MALT B cells from AIS to MIA and an
increase in Tregs and secretory B cells from MIA to IAC. Notably, for AIS, cancer cells, NK cells, and mast cells were colocalized in the
cancer region; however, for IAC, Tregs colocalized with cancer cells. Finally, communication and interaction between cancer cells
and TME cell-induced constitutive activation of TGF-β signaling were involved in the invasion of IAC. Therefore, our results reveal
the specific cellular information and spatial architecture of cancer cells and TME subpopulations, as well as the cellular interaction
between them, which will facilitate the identification and development of precision medicine in the invasive process of LUAD from
AIS to IAC.
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INTRODUCTION
In the latest lung cancer classification system by the WHO
(5th edition)1, lung adenocarcinoma in situ (AIS), mainly identified
as a ground-glass nodule (GGN) as a precursor glandular lesion,
was excluded from the lung adenocarcinoma (LUAD) category due
to its substantial difference from minimally invasive adenocarci-
noma (MIA) and invasive adenocarcinoma (IAC) in long-term
outcomes2,3. However, the detailed cell population and genes, as
well as their spatial information implicated in the invasive
progression of LUAD from AIS to IAC, remain poorly understood.
Canonical cancer gene mutations in cancer cells, such as EGFR

and TP53, have been widely reported in AIS, which promoted the
invasion of LUAD from AIS to IAC by the accumulation of
mutations in the branch of the evolutionary tree, potentially
“switching” molecules responsible for invasive events4–7. More-
over, a pioneering study revealed that dysregulation of immune
surveillance of the tumor microenvironment (TME) occurs through
the process of invasive LUAD, even in AIS4. Although the genomic
landscape of preinvasive LUAD (AIS and MIA) has been clarified to

some extent using the traditional sequencing strategy, such as
bulk whole-exome sequencing (WES) and bulk RNA sequencing
(bulk RNA-seq)5,6, a mixed population of cancer cells and TME
components in one tissue was generally used for in silico analysis
in this scenario. Therefore, sequencing technology to determine
cell-type-specific profiles is urgently needed.
With the advent of single-cell RNA sequencing (scRNA-seq), it

has been regarded as an unprecedented tool for dissecting the
heterogeneity of cancer at the single-cell level and developing a
comprehensive gene expression atlas. Studies on the preinvasive
LUAD genomic atlas determined by scRNA-seq are limited, and
only a few studies have decoded the multicellular environment of
GGNs using this novel technology8–10. At the single-cell level, the
above studies demonstrate that the enrichment of Tregs and
the reduction of cytotoxic CD8+ T cells in the TME are involved in
the malignant progression from GGN to IAC. Notably, single-cell
dissociation lacks spatial information, which is indispensable for a
comprehensive understanding of the pathophysiology and
progression of LUAD, especially in its immunophenotyping11–13.
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To address this issue, spatial transcriptomics (ST) seamlessly
overcomes the disadvantages of scRNA-seq14 and has been widely
applied in the study of the spatial distribution of cancer cells and
TMEs15–17. Since the strengths of scRNA-seq and ST are
complementary, combining these two technologies can simulta-
neously reveal the heterogeneity of cancers and the spatial
distribution of their diverse ecosystems. However, such multiomics
data have not been elucidated in the invasive process of LUAD.
To illuminate the evolutionary trajectory of LUAD, high-

throughput scRNA-seq and ST data were generated and
integrated to create a large-scale, single-cell spatiotemporal
multiomics atlas of invasive LUAD to reflect the heterogeneity of
cancer tissues, distinct cancer cells, and TME cell populations in
LUAD with different invasive states, as well as the signaling
interactions between cancer cells and the TME from cellular and
spatial perspectives from AIS to IAC. The advent of this
illuminating study will provide strong theoretical evidence to
improve the clinical diagnosis and surgical intervention of early-
stage LUAD.

MATERIALS AND METHODS
Patient enrollment and specimen collection
Nine specimens were collected from nine patients with primary LUAD who
were first examined and underwent surgery in the Department of Thoracic
Surgery, Tangdu Hospital (Supplementary Table 1). The inclusion criteria
were as follows: (1) single lung nodule; (2) maximum diameter of the
tumor ≤ 3.0 cm; (3) histological diagnosis of LUAD; (4) no previous history
of other malignant tumors; (5) negative pathological N stage; (6) no distant
metastasis; and (6) radical lobectomy/segmentectomy. The pathological
diagnosis was independently carried out by three experienced patholo-
gists in accordance with the 5th edition of the WHO lung tumor
classification system.

Preparation of single-cell suspensions
Following isolation and pathological clearance of fresh specimens, the
tumor samples were rinsed with cold phosphate-buffered saline (PBS).
According to preoperative CT axial localization, each tumor sample was
divided into two portions along the long axis: one portion was used for
scRNA-seq and ST, and the other portion was used for routine and
independent pathological diagnosis by two experienced pathologists. Each
sample was cut into 3-mm-thick slices along the maximum diameter,
placed into optimal cutting temperature (OCT) compound and then frozen
in isopentane cooled in liquid nitrogen for further ST; the remaining
sample was cut into portions less than 1mm3 in volume. A human tumor
dissociation kit enzyme solution (Miltenyi Biotec; 200 µl of H-enzyme,
100 µl of R-enzyme, 25 µl of A-enzyme, 4.7 ml of DMEM) was added for
enzymatic digestion for 30min at 37 °C, and the sample was filtered
through a Miltenyi 70-μm sieve. After centrifugation, the granular cells
were suspended in erythrocyte lysis buffer. Finally, the cells were mixed
with 1ml of PBS, and the numbers of live cells and aggregated cells were
measured with an automatic cell counter18.

scRNA-seq
For droplet-based scRNA-seq, GemCodeGel beads, chips and library kits
(10′ Genomics) were used to process single cells according to the gel
beads in emulsion (GEMs) protocol (Genergy Inc., Shanghai, China). Based
on the manufacturer’s instructions, the Chromium Single Cell 3′ V2/V3 Kit
was used to construct the scRNA-seq reagent library. Then, the cell
suspension generated from each sample was reacted with certain reagents
to generate single-cell GEMs in the Chromium Controller for sample and
cell barcoding, with a target output of 8,000 to 12,000 cells per sample. The
amplified cDNA and final library were evaluated with an Agilent
Bioanalyzer using a high-sensitivity DNA kit (2100, Agilent Technologies).
Then, the samples were sequenced using NovaSeq 6000 (Illumina)
platforms. Approximately 400M readings were obtained for each sample.

scRNA-seq data quality control and integration
ScRNA-seq reads were demultiplexed and aligned to the ENSEMBL GRCh38
human transcriptome to generate gene expression matrices using
CellRanger (v4.0.0). The following criteria were then applied to select cells

for all nine patients: (1) gene numbers between 200 and 10,000; (2) unique
molecular identifier (UMI) count>500; (3) mitochondrial gene percentage <
0.1; and (4) hemoglobin gene percentage <0.1. After filtering, the final
dataset consisted of data from 115,246 cells. We then performed
integrated analyses using Seurat (version 3.2.2)19. Briefly, the filtered gene
expression matrix was first normalized using LogNormalize methods, and
the top 2000 highly variable features were then selected using the vst
method20. Next, we identified “anchors” between individual datasets and
integrated scRNA-seq data and used these anchors to harmonize the
datasets. Finally, we obtained a batch-corrected expression matrix of all
cells for downstream analysis.

Clustering and cell type annotation
The integrated data were scaled, and dimensionality reduction was
performed by principal component analysis (PCA). The Louvain clustering
algorithm implemented in Seurat was then applied to the PCA reduced
data for clustering analysis with 30 principal components (PCs)21. The
resolution was set to 0.5 to obtain the clustering results. The top 50 PCs
were selected for uniform manifold approximation and projection (UMAP)
to visualize the cell clustering results22. Differentially expressed genes
(DEGs) for each cluster were then identified using the Wilcoxon test. Only
genes for which the difference in expression had an adjusted P value
< 0.05 and a logFC > 0.25 were considered marker genes. Clusters were
then annotated based on the marker genes of particular cell types. We
then performed subclustering for each major cell type. Briefly, data from
cells of each major cell type were extracted from the integrated dataset,
and clustering was performed as described above with cell type-specific
resolution.

Reproducibility of single-cell studies
We quantified the reproducibility of subclusters for each major cell type
through single-cell reproducibility across donors (scRAD)23 to assess the
important marker gene expression differences across different patients for
each condition (AIS, MIA, IAC). Briefly, we first pooled the normalized log-
TPM data for each patient and assessed signal reproducibility across 3
patient donors for each condition through irreducible discovery rate (IDR)
analysis to emphasize differential expression that is reproducible across
patients24. For each gene, we can estimate the probability that the gene is
an “irreproducible gene” (IDR <= 0.01) or a “reproducible gene” (IDR > 0.01).

Identification of cancer cells
To identify cancer cells, we searched for copy number variations (CNVs) for
each subcluster of the epithelial cell cluster from the scRNA-seq data with
inferCNV (version 1.2.1)25. Raw count data were extracted from the Seurat
object as recommended in the “Using 10× data” section. Endothelial cells
were considered reference cells, and their CNV estimates were used to
define a baseline. We created a gene ordering file from the human CRCh38
assembly, which contains the chromosomal start and end positions for
each gene. For the inferCNV analysis, we used a cutoff of 0.1 for the
minimum average read counts per gene among reference cells and
denoised the output to predict the CNV level.

Gene set variation analysis (GSVA)
Gene set enrichment analyses were performed with 50 hallmark pathways
that were exported using the Molecular Signatures Database (MSigDB)26.
To assign pathway activity estimates to each cell type, we performed GSVA
for each cell and then calculated the average gene expression level for
each cell subcluster and applied GSVA using standard settings with the
GSVA package (version 1.34.0)27. Differences between activity scores were
used to quantify differential pathway activity between different subclusters
of cells.

Prediction of regulons
Single-cell regulatory network inference and clustering (SCENIC) (version
1.2.4) was used to assess the regulatory network consisting of transcription
factors (TFs) and discover regulons (TFs and their target genes) for each
cell28. Following the latest SCENIC pipeline, the integrated gene expression
matrix with gene names in rows and cells in columns was input into
SCENIC. A human-specific genome (hg19) was input into the RcisTarget
database. Briefly, coexpression modules between TFs and potential target
genes were identified with GENIE3 (version 1.12.0)29, regulons were
identified through cis-regulatory motif enrichment analysis of all potential
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target genes with RcisTarget (version 1.10.0), and the activity score of each
regulon for each cell was assessed with AUCell (version 1.13.3). To assess
differences in regulon activity between subpopulations of cells, we
assessed the activity scores for each cell using the Limma package
(version 3.42.2)30. Differential regulon activities were calculated for each
subcluster, and t values were used to quantify these differences.

Prediction of cancer cell trajectory
We performed trajectory analysis with Monocle2 (version 2.14.0)31–33 to
characterize the process of cancer cell development and determine lineage
differentiation among diverse cancer cells. Following a standard protocol, we
directly imported the integrated gene expression data into Monocle2 and
then ordered cells based on the DEGs between cancer subclusters according
to the significant genes (q value<0.01). The cancer cell differentiation
trajectory was inferred after dimension reduction with the DDRTree method
and cell ordering with the default parameters of Monocle2.

Cell‒cell communication analysis
We assessed differences in putative cell‒cell communication modules
between cell types for samples at each stage (AIS, MIA and IAC) by
integrating the gene expression data through CellChat (version 1.0.0)34.
Following the standard CellChat pipeline, we used the default CellChatDB as
the ligand‒receptor database and then inferred cell type-specific commu-
nication by identifying overexpressed ligands or receptors in one cell group
and then identifying enhanced ligand‒receptor interactions when either the
ligand or receptor was overexpressed. We then used NicheNet to investigate
the signaling mediators involved in ligand‒receptor pairing among cancer
cells signaling with immune cells, endothelial cells, and fibroblasts35. During
the NicheNet runs, cancer cells were set as ‘receiver’ and other cell types as
‘sender’ populations. For both the sender and receiver populations, the
genes of the signaling pathway of interest, which were expressed in at least
10% of the cells, were used for downstream analysis. NicheNet analysis was
performed based on the vignette to rank potential ligands, infer receptors,
and top-predicted target genes of ligands.

Tissue handling for ST
The prepared frozen sections described above were sliced at a thickness of
10 µm, embedded on frozen Visium tissue optimization slides (3000394,
10× Genomics) and Visium spatial gene expression slides (2000233, 10×
Genomics), and stored at −80 °C until use. Afterward, the sections were
fixed in frozen methanol and stained according to the Visium Spatial Gene
Expression User Guide (CG000239 Rev A, 10× Genomics) or Visium Spatial
Tissue Optimization User Guide (CG000238 Rev A, 10× Genomics). The
Qiagen RNeasy Mini Kit was applied for RNA extraction and isolation, after
which an Agilent 2100 bioanalyzer was used for RNA integrity number
(RIN) calculation (RIN ≥ 7). The tissue with meaningful gene expression was
permeabilized for 6 min, regarded as the best time for idealizing tissue
according to a time course experiment. A cDNA library was established
according to the visium spatial gene expression user guide. The cDNA
library was sequenced on a HiSeq 3000 system (Illumina) with a
sequencing depth of approximately 250‒270 M reads for each sample.

ST data processing
The 10× Genomics Spatial RNA-seq Visium platform was used to perform
spatial transcriptomics experiments. Hematoxylin and eosin (HE)-stained
sections were analyzed via 10× Genomics Space Ranger software (Genergy
Inc., Shanghai, China). The spatial RNA-seq data were analyzed with the
Seurat package19 (version 3.2.2). Briefly, for each sample, the gene-spot
matrix was normalized by sctransform20, and dimensionality reduction was
performed by PCA. The Louvain clustering algorithm was then applied to
the reduced data for clustering analysis with 30 PCs. The resolution was set
to 0.5 to obtain the clustering result. The DEGs for each cluster were then
identified using the Wilcoxon test. Only genes whose differential
expression had an adjusted P value < 0.05 and a logFC > 0.25 were
considered marker genes. To determine the cell type that was enriched in
each cluster, we queried the significance of the overlap between ST marker
genes and scRNA-seq marker genes using Fisher’s exact test, with all genes
as the background, to compute the odds ratio and P value.

Cell type decomposition analysis of spatial transcriptome data
Robust cell type decomposition (RCTD) was used to map the cell types
found in the reference scRNA-seq dataset to spatial transcriptomic data36.

Marker genes for each cell type were obtained using the Seurat function
FindAllMarkers, whereby only markers with positive log2-transformed fold
changes were considered. We then followed the standard RCTD analysis
pipeline on the reference and Visium spatial transcriptomics data in
doublet mode set to full.

Spatial trajectory analysis
Patterns of transient gene expression along spatial trajectories were
analyzed by Monocle3 (version 1.0.0), which was easily implemented
through SPATA (version 0.1.0)37,38. Specifically, spots that belonged to
either the epithelial region or the cancer region were extracted and
ordered along the pseudotime trajectory. Following the SPATA protocol,
we switched the spata object to the cds object and ordered spots based
on DEGs between subclusters according to the significant genes (q
value<0.01). The spatial trajectory was inferred after dimension reduction
with the UMAP method. Monocle3 provides a shiny interface to select a
root for pseudotime annotation. We randomly selected spots that
belonged to the epithelium region as the root.

Querying spatial transcriptome data with scRNA-seq data
using Cell-ID
We performed Cell-ID39 to query the gene expression of each spot in
spatial transcriptome data to scRNA-seq clustering results. Following the
Cell-ID vignette, we first performed dimensionality reduction through
multiple correspondence analysis (MCA) for both scRNA-seq data and
spatial transcriptome data, extracted the gene signature of the cell types
that clustered in scRNA-seq data, and then performed cell type annotation
via hypergeometric tests for each spot based on the gene signature of
reference scRNA-seq data.

Bulk RNA-seq
Total RNA was extracted and prepared from LUAD and paired
paracancerous tissues (AIS: 20, MIA: 17, IAC: 23, Supplementary Table 3)
following the manufacturer’s instructions by using TRIzol (Invitrogen, CA,
USA). The total RNA for each sample was > 1 µg as the initial material for
RNA sample preparation. The captured mRNA was fragmented, and cDNA
was synthesized. Subsequently, the uracil-DNA glycosylase (UDG) enzyme
(NEB, catalog number m0280, MA, US) was used to generate a sequencing
library following the manufacturer’s instructions. The library was
sequenced on the Illumina Novaseq™ 6000 (LC Bio Technology Co., Ltd.,
Hangzhou, China) platform, and a 150 bp paired-end read was generated.
To explore cancer cell and immune cell landscapes in bulk-seq data, single-
sample gene set enrichment analysis (ssGSEA) was performed using the R
package “gsva” with the aim of assessing the proportion of cells of interest
(recorded as ssGSEA scores) in a single sample based on DEGs from scRNA-
seq27. The Wilcoxon test was used for comparison of numerical data, and
the chi-square test and Fisher test were used for constituent ratio analysis.
Finally, the impact of different cellular infiltrations on patient prognosis
was analyzed using the TCGA-LUAD databases.

Immunofluorescence (IF) staining
We established a tissue microarray (TMA, 3 mm) consisting of LUAD
samples: 14 AIS samples, 18 MIA samples, and 17 IAC samples
(Supplementary Table 4). After antigen repair and blocking, the TMA was
incubated with specific primary antibodies (EPCAM, Servicebio, GB14078,
1:200; FOXP3, Servicebio, GB11093, 1:200; TPSB2, Novus, NBP2-33551,
1:300; CD79A, Novus, NB100-64347ss, 1:200; CLDN5, Servicebio, GB11290,
1:200; COL1A1, Affinity, AF7001, 1:200; UBE2C, Abcam, ab12290, 1:50; p-
SMAD2, Affinity, AF8314, 1:200; SCGB1A1, Servicebio, GB111412, 1:200;
PDPN, Affinity, AF3670-SP, 1:200; FCN1, Novus, NBP1-84706, 1:200; GHD,
Proteintech, 67538 1:250; PCNA, Servicebio, GB11010, 1:300), incubated
with horseradish peroxidase (HRP)-labeled secondary antibodies or
fluorophore-labeled secondary antibodies, and finally stained with
diaminobenzidine and counterstained with hematoxylin or stained with
DAPI. Three independent pathologists distinguished the pathological type
for the TMA.

Cell culture
The human LUAD cell line PC-9 was purchased from the Cell Bank of the
Chinese Academy of Sciences (Shanghai). The cells were cultured in RPMI-
1640 medium containing 10% fetal bovine serum (FBS) in a humidified
incubator at 37 °C with 5% carbon dioxide.

J. Zhu et al.

2062

Experimental & Molecular Medicine (2022) 54:2060 – 2076



Cell infection and transfection
The nucleic acid sequence used to construct the siRNAs was UBE2C: 5′-
GCAAGAAACCUACUCAAAGTT-3′, and the control siRNA sequence was 5′-
UUCUCCGAACGUGUCACGUTT-3′. Control siRNAs (GenePharma, Shanghai,
China) and target siRNAs (GenePharma, Shanghai, China) were transfected
into PC-9 human LUAD cells using Lipofectamine 2000 (Invitrogen, CA,

USA). Moreover, recombinant lentiviruses (Hanheng Biotechnology,
Shanghai, China) for UBE2C gene interference were also induced in PC-
9 cells to generate stable cell models. When the results of RT qPCR and
western blot analyses demonstrated significant inhibition of UBE2C mRNA
and protein levels, then the gene interference was considered to be
successful.
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RNA isolation and quantitative reverse transcription
polymerase chain reaction (qRT‒PCR)
Total RNA was extracted from frozen tissues using TRIzol reagent (Invitrogen,
USA). A Revert Aid First-Strand cDNA Synthesis Kit (Thermo Scientific, Vilnius,
Lithuania) was used to prepare reverse transcription according to the
manufacturer’s protocols. qRT‒PCR was carried out using LightCycler-Fast-
Start DNA Master SYBR Green (Roche Diagnostics, Tokyo, Japan). Gene
expression was normalized to β-actin. The mRNA levels were expressed as
the threshold cycle (CT). The amount of target was measured using the
2-△△CT method. The primers used for qRT‒PCR were UBE2C-F: 5′-AGTG
GCTACCCTTACAATGCG-3′ and UBE2C-R: 5′-TTACCCTGGGTGTCCACGTT-3′.

Transwell experiment
Transwell chambers (8-μm pores; Corning Inc., New York) and an artificial
basement membrane (Matrigel) (Corning Inc.) (BD Biosciences, USA) were used
to test the ability of cells to invade. A cell suspension in medium without fetal
bovine serum was added to the upper compartment, and medium containing
20% fetal bovine serum was added to the lower compartment. After culture
for 24 to 48 h, the cells on the lower surface were fixed with methanol and
stained with 0.2% crystal violet for counting. An additional Transwell chamber
without an artificial basement membrane (Corning) was simultaneously used
to test cell migration. Cell counts were used as the mean ± standard error, an
unpaired T test was used for comparisons between different groups, and a
two-tailed P value < 0.05 was considered statistically significant.

Cell proliferation assay
When cells were in the logarithmic growth phase, they were trypsinized and
diluted to 6.5 × 104 cells/mL. The CIM detection plate dedicated to the RTCA
xCELLigence DP workstation (live cell workstation) was prepared, 50 μl of
culture medium was added and allowed to equilibrate for 1 h in the
incubator, the baseline was measured, 100 µL/well of the prepared cell
suspension was added to the CIM plate, and the growth curve was measured.

In vivo tumor xenograft assay
Briefly, 4-week-old nude mice were randomly divided into two groups (sh-NC
and sh-UBE2C groups), with five mice in each group, and the above cancer
cells were subcutaneously inoculated (2 × 106 cells/mouse). Tumor formation
in mice was observed and recorded every 3 days for 3 weeks, the tumor
volume was calculated, and the tumor growth curve was drawn. After 3 weeks,
the mice were sacrificed by cervical dislocation, and the xenograft tumors
were collected, embedded in paraffin, and stained with HE to observe tumor
formation in the xenograft tumors. All animal experiments were approved by
the Animal Care Committee of the Air Force Medical University (No. 20220667).

Statistical analysis
All statistical analysis tools, methods and thresholds used in the article are
described in detail in the Materials and Methods section.

RESULTS
Identification of cell subtypes in LUAD and differentially
expressed genes during the invasive process of LUAD with
scRNA-seq
To determine the specific cell populations or potential candidate
gene signatures involved in the invasion of LUAD, we first

collected nine primary LUAD samples, including 3 AIS, 3 MIA and 3
IAC samples (Fig. 1a, Supplementary Fig. 1a, and Supplementary
Table 1), for droplet-based scRNA-seq. We obtained a total of
115,246 cells consisting of 37,143 cells (32.2%) from AIS, 30,909
cells (26.8%) from MIA and 47,194 cells (41.0%) from IAC through
scRNA-seq, where 25 high-confidence cell clusters were identified
based on marker genes (Supplementary Fig. 1b). These cell
clusters were broadly divided into ten cell lineages from C1 to C10
(Fig. 1b, left panel), and the principal origin of each cell lineage
from AIS, MIA or IAC was further analyzed and depicted (Fig. 1b,
right panel). Among them, six major cell types were defined by
well-established canonical marker genes40,41 (Fig. 1c, Supplemen-
tary Fig. 1c, and Supplementary Table 2), including epithelial cells
(EPCAM and SCGB1A1), T/NK cells (CD3D, NKG7, GZMK, and
GNLY), B cells (CD79A, JCHAIN, and IGHG1), myeloid cells (LYZ,
TPSB2, AIF1, HLA-DRA, HLA-DRB1, and CPA3), endothelial cells
(CLDN5) and fibroblasts (COL1A1 and DCN). Next, we prepared a
TMA containing AIS/MIA/IAC samples and used IF to calibrate the
expression of gene markers by the above cells (Fig. 1d and
Supplementary Table 3). The percentage of each cell subtype
within each cell type (Supplementary Fig. 1d, left panel), as well as
the percentage of gene transcript levels of each cell subtype
(Supplementary Fig. 1d, right panel) in LUAD tissues, were
investigated in depth and summarized.
To further explore the mechanism of the invasive process of

LUAD at the cellular level, we compared the gene expression
patterns of each cell type, including cancer cells defined by
DEGs and CNVs (Supplementary Fig. 1e) as well as six other
component cells identified through canonical marker genes (Fig.
1c and Supplementary Fig. 1c), among two of the three groups.
During the invasive progression of LUAD, 512 upregulated and
332 downregulated DEGs were identified between the MIA and
AIS (M/A) groups, 199 upregulated and 347 downregulated
DEGs between the IAC and MIA (I/M) groups, and 393
upregulated and 345 downregulated DEGs between the IAC
and AIS (I/A) groups. Notably, approximately half of the
upregulated DEGs in the I/A group were already detectable in
the M/A group (Fig. 1e, f). PCA of the DEGs revealed that MIA
and IAC were very close at the transcriptomic level (Fig. 1g).
Further analysis revealed enriched cell types for the three
different stages of LUAD (Fig. 1h). To demonstrate the
reproducibility of our data, we reclustered cells according to
disease stage and patient. As expected, we found the distribu-
tion of cell types in three stages and per patient of LUAD to
further confirm our results (Supplementary Fig. 2). In addition, to
examine individual variations in our scRNA-seq data, we
quantified by Spearman correlation and found less individual
heterogeneity among the three patients at the same stage
(Supplementary Fig. 3). Taken together, these findings suggest
that cell-type-specific transcriptional changes contribute to the
invasive development of LUAD and that the transition of AIS to
MIA is a key process in the early invasion of LUAD.

Fig. 1 Research design and main findings of this study. a The heterogeneity of cancer cells and the TME in early LUAD at three stages (AIS, MIA
and IAC) was determined by scRNA-seq. The multicellular spatial environment for each of the three stages was mapped by ST. Hypergeometric
distribution analysis was used to integrate cell type-specific and spatial gene expression data obtained by applying scRNA-seq and ST, respectively.
Multiple methods were used to validate that the UBE2C cancer cell subcluster and Tregs, NK cells and mast cells in the TME mediate the invasion of
early-stage LUAD cells. b UMAP showing classification of scRNA-seq data from 115,246 cells from 9 LUAD patients by cell type (left) and pathological
stage (right). c UMAP of scRNA-seq showing six major cell types identified by marker gene expression (EPCAM: epithelial cells; NKG7: NK/T cells; LYZ:
myeloid cells; CD79A: B cells; CLDN5: endothelial cells and DCN: fibroblasts). d Protein expression of marker genes determined by IF in six cell types
from a TMA consisting of independent LUAD samples (14 AIS cases, 18 MIA cases, 17 IAC cases). e Heatmaps of scRNA-seq showing upregulated DEGs
(left panel, red) and downregulated DEGs (right panel, blue) by cell type for the following comparisons: MIA versus AIS (M/A), IAC versus MIA (I/M) and
IAC versus AIS (I/A). Genes with nonsignificant changes in expression between the two groups are colored and labeled gray. DEGs shared by at least
two cell types are shown in the upper portion of the figure (outlined). The middle portion shows DEGs shared by at least two groups, and the lower
portion shows DEGs unique to each cell type in each group. The number of genes is marked in the figure. f Venn diagrams showing the numbers of
common upregulated DEGs (upper panel) and downregulated DEGs (right panel) among the three groups. g Principal component analysis (PCA)
showing the DEGs among the three groups. The distance between dots represents the difference between groups. h Cell type changes in the three
stages of LUAD (the abscissa is MIA vs. AIS, and the ordinate is AIC vs. MIA). The P value was determined using the Wilcoxon-guided cell ratio test.
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The UBE2C+cell subpopulation contributes to the whole
invasive process of LUAD
First, to confirm the pivotal cancer cell subclusters that initiate
LUAD invasion, epithelial cells (12,879) were further reclustered
into 8 subpopulations (Epi-C0-Epi-C7), including 4 cancer cell

subpopulations [Clara-like cancer cells (Epi-C1), TM4SF1+ cancer
cells (Epi-C0), CRABP2+ cancer cells (Epi-C3), and UBE2C+ cancer
cells (Epi-C6)] and 4 normal lung epithelial cell subpopulations
[alveolar type I cells (AT1, Epi-C2), alveolar type II cells (AT2, Epi-C5),
Clara cells (Epi-C7), and ciliated cells (Epi-C4)] (Fig. 2a, b and
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Supplementary Fig. 4a) using CNV analysis with endothelial cells as
references9,42–44. For the cancer cell subtypes, we found that
compared with Clara-like cancer cells (Epi-C1) and
CRABP2+ cancer cells (Epi-C3), the proportions of both
TM4SF1+ (Epi-C0) and UBE2C+ (Epi-C6) cancer cells were con-
stantly increased during the invasive process of LUAD and
dramatically elevated in IAC. Notably, the proportion change of
the UBE2C+ subtype was more pronounced than that of the
TM4SF1+ subtype from AIS to MIA (Fig. 2c). This suggested that
UBE2C+ subtype cancer cells may play a more important role in
the initiation of LUAD invasion and metastasis, which was further
supported by the findings that UBE2C acts as an oncogene and
promotes metastasis in other tumors9,42. Consistently, UBE2C+
subtype cancer cells were found to gradually and stably increase
from AIS to IAC using IF and bulk RNA-seq (Fig. 2d, e). Using
ssGSEA, we validated the effect of UBE2C+ cancer cells (Epi-C6) on
the prognosis of patients with LUAD in the TCGA-LUAD database
and found that it can be used as a biomarker for predicting the
prognosis of LUAD (Fig. 2f). UBE2C+ cancer cells (Epi-C6) were
mainly enriched in the following gene sets: MYC target V1, cell
cycle, AKT and TGF-β signaling pathways and other gene sets; thus,
these cells may promote the progression of cancer through these
pathways (Fig. 2g). However, neither the expression levels nor the
prognostic significance of TM4SF1 was identified using bulk RNA-
seq and survival analysis (Supplementary Fig. 4b, c). To investigate
the regulatory effects of TFs in different cancer subclusters, we
performed SCENIC analysis (Supplementary Fig. 4d). These findings
indicate that the accumulation of the UBE2C+ cell subpopulation
and activation of signaling pathways are implicated in the whole
invasive process of LUAD.
To reveal the origin of LUAD at the single-cell level, trajectory

analysis was performed to decipher the cell trajectory of LUAD
from normal epithelial cells to cancer cells. Both CNV and DEG
analysis confirmed the malignant characteristics of cancer cells
(Fig. 2b and Supplementary Fig. 4e). Starting from the well-known
AT2 cell as the root45, the cells were found to first evolve into
Clara-like cancer cells (Epi-C1), then into CRABP2+ cancer cells
(Epi-C3) and TM4SF1+ cancer cells (Epi-C0), and finally into
UBE2C+ cancer cells (Epi-C6) as the most poorly differentiated
cancer cell type and the end state (Fig. 2h, top panel). Moreover,
the pseudotime trajectory axis indicated that Clara cells (Epi-C7)
could transdifferentiate into Clara-like cancer cells (Epi-C1) and
then two other cancer cell types (Epi-C0 and Epi-C3), while
UBE2C+ cancer cells (Epi-C6) remained the least differentiated
cancer cell type in this track (Fig. 2h, lower panel). IF staining
showed the coexistence of Clara-like cancer cells (Epi-C1) and
UBE2C+ cancer cells (Epi-C6) in LUAD at three different stages
(Supplementary Fig. 4f), especially in AIS. Based on these findings,
LUAD may originate from both Clara cells and AT2 cells, and the
UBE2C+ cancer cell subpopulation is the terminal cell type
of LUAD.
As a marker gene of Epi-C6, investigating the UBE2C gene is

very important for us to further understand the role of UBE2C+
cancer cells (Epi-C6). Using bulk RNA-seq data (60 cases), we
verified that UBE2C expression levels gradually increased in the
three stages of LUAD (Fig. 3a, Supplementary Table 4). From the

TCGA-LUAD dataset (402 LUAD cases), patients with high UBE2C
expression had poorer progression-free survival (P= 0.025) and
overall survival (P= 0.0013), as shown in Fig. 3b. Our in vitro
experiments confirmed that UBE2C mediates the malignant
progression of LUAD by affecting LUAD proliferation and invasion
(Fig. 3c, d). Furthermore, in vivo experiments showed that UBE2C
silencing significantly attenuated the growth of subcutaneous
tumors (Fig. 3e–g). Taken together, these results suggest that
UBE2C mediates the proliferation and metastasis of LUAD cells.

Investigation of distinct TME cell subpopulations in LUAD
invasion
To explore the changes in different TME cell types during the
invasive process of LUAD, each cell type of the five major TME cell
populations (Fig. 1c) was further investigated. First, T/NK cells and
myeloid cells were subclassified by clustering analysis. As shown
in Fig. 4a, 8 subtypes of T/NK cells, including 2 subtypes of
CD4+ T cells (T/NK-C0: LTB+ and T/NK-C2: CXCL13+ ), 2 subtypes
of CD8+ T cells (T/NK-C1: GZMK+ and T/NK-C3: CCL4L2+ ),
2 subtypes of NK cells (T/NK-C4: GNLY+ and T/NK-C5: NKG7+ ),
1 subtype of Tregs (T/NK-C6: FOXP3+ ) and 1 subtype of
fibroblast-like T cells (T/NK-C7: HSPA1B+ ) (Fig. 4a, left panel),
and 10 subtypes of myeloid cells, including 2 subtypes of mast
cells (Mye-C0: TPSB2+ and Mye-C9: CPA3+ ), 2 subtypes of
macrophages (Mye-C1: CCL3 L and Mye-C2: FABP4, anti-inflam-
matory), 2 subtypes of dendritic cells (Mye-C4: S100B+ and Mye-
C8: TXN+ ), 2 subtypes of granulocytes (Mye-C3: GOS2+ and
Mye-C5: S100A9+ ), one subtype of monocytes (Mye-C7: FCN1+ )
and one subtype of myeloid cells (Mye-C6, proliferating) (Fig. 4a,
right panel) were identified. Among them, the percentages of
mast cells (Mye-C0: TPSB2+ ) and monocytes (Mye-C7: FCN1+ )
gradually and consistently decreased from AIS and MIA to IAC (Fig.
4b). However, the percentage of NK cells (T/NK-C4: GNLY+ ) was
only increased from AIS to MIA, while the abundance of Tregs (T/
NK-C6: FOXP3+ ) was dramatically elevated from MIA to IAC (Fig.
4b). Consistently, bulk RNA-seq and IF assays further confirmed
the patterns of cell subpopulation alterations (Fig. 4c, d). The
potential hallmark signaling pathways implicated in these cell
subpopulation alterations were further analyzed using GSVA. As
shown in Fig. 4e, f, cell cycle- and cell growth- or proliferation-
related pathways, including PI3K/AKT/MTOR signaling, G2M
checkpoint, E2F targets, and MYC targets V1, were highly enriched
in NK (T/NK-C4: GNLY+ ) and Tregs (T/NK-C6: FOXP3+ ); Hedge-
hog, WNT β-catenin and interferon signaling were pronounced in
mast cells (Mye-C0: TPSB2+ ) and monocytes (Mye-C7: FCN1+ ).
Therefore, we proposed that activation of tumor-associated
pathways mediated by an increase in Tregs and a decrease in
monocytes promotes early LUAD invasion.
Similarly, among 8 B-cell subtypes, 5 endothelial subtypes and 7

fibroblast subtypes (Supplementary Fig. 5a and 6a), we found that
the fraction of MALT B cells (C4: IGHD+ ) was markedly reduced
from AIS to MIA/IAC, and the fraction of secretory B cells (C7:
GZMB+ ) was dramatically increased from MIA to IAC (Supple-
mentary Fig. 5b). Furthermore, the proportion of lymphatic
endothelial cells (End-C4: PDPN+ ) was constantly decreased
from AIS to IAC (Supplementary Fig. 6b), while the fraction of

Fig. 2 LUAD cells have a polyclonal origin, and the UBE2C+ cancer cell subcluster drives the invasion of LUAD. a UMAP of scRNA-seq
showing eight subclusters consisting of 12,879 epithelial cells from nine LUAD specimens. b Large-scale CNVs were observed in four types of
cancer subclusters (Epi-C0, Epi-C1, Epi-C3 and Epi-C6) compared to normal endothelial cells. The color shows the log2 CNV ratio. Red
represents amplifications, and blue represents deletions. c Area plot showing changes in eight subtypes of epithelial cells at three
pathological stages of LUAD. d IF analysis of LUAD TMAs (14 AIS cases, 18 MIA cases and 17 IAC cases) showing cancer cells (Epi-C6: UBE2C+ )
in the three stages of LUAD. e ssGSEA validated that the expression level of UBE2C+ cancer cells increased in the process of cancer invasion
from bulk RNA-seq data (20 AIS cases, 17 MIA cases and 23 IAC cases). f Survival curves of patients with LUAD according to gene signatures of
UBE2C+ cancer cells (Epi-C6) in TCGA-LUAD dataset (upper panel: DFS; lower panel: OS). g Heatmap of the GSVA results showing differences
in pathway activity among different cancer cell subclusters from scRNA-seq data. h. Pseudotime analysis by Monocle2 shows the potential
evolutionary trajectory of LUAD. Upper: AT2 (Epi-C5) as the root; Down: Clara cell (Epi-C7) as the root.
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cancer-associated fibroblasts (C1) was significantly decreased in
IAC compared with AIS and MIA (Supplementary Fig. 6b). Bulk
RNA-seq and IF assays further demonstrated similar expression
patterns of corresponding cell type markers from AIS to IAC

(Supplementary Fig. 5c, d and Supplementary Fig. 6c, d). GSVA
revealed that oxidative phosphorylation, DNA repair, and reactive
oxygen species pathways were highly enriched in secretory B
cells-C7 and TGF-β signaling in MALT B cells-C4 (Supplementary

Fig. 3 High UBE2C expression promotes the invasion and metastasis of lung adenocarcinoma cells. a Bulk RNA-seq analysis (60 cases)
validated that the expression level of the UBE2C gene increased in the process of cancer invasion. b Kaplan‒Meier analysis (data for 402 LUAD
cases from the TCGA database) revealed that patients with high UBE2C expression had worse progression-free survival (upper panel,
P= 0.025) and OS (lower panel, P= 0.0013). c A Transwell assay confirmed that knockdown of the UBE2C gene in the PC-9 LUAD cell line
decreased cancer cell migration (upper panel) and invasion (lower panel). d Cell index assay showing that sh-UBE2C inhibits the proliferation
of PC-9 lung cancer cells. e Growth curves of xenograft tumors in each group. f Subcutaneous tumor size of each group. g HE representative
images of nude mouse xenografts UBE2C and sh-UBE2C.

J. Zhu et al.

2067

Experimental & Molecular Medicine (2022) 54:2060 – 2076



Fig. 5e, f); Notch signaling, oxidative phosphorylation, MYC target
V2, reactive oxygen species pathway, and TGF-β signaling were
pronounced in lymphatic endothelial cells (End-C4: PDPN+ ), and
oxidative phosphorylation, MYC signaling, DNA repair, WNT
β-catenin signaling, TGF-β signaling, and epithelial mesenchymal

transition (EMT) were pronounced in cancer-associated fibroblasts
(C1) (Supplementary Fig. 6e, f). Notably, these results suggest that
TGF-β signaling activation in TMEs is involved in the invasion
process, which is consistent with previous studies46,47. Collectively,
these results suggest that a constant decrease in mast cells (Mye-
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C0), monocytes (Mye-C7) and lymphatic endothelial cells (End-C4)
may be implicated in the whole invasive process of LUAD. In the
early stage of invasive LUAD, the increases in NK cells (T/NK-C4)
and MALT B cells (B-C4) were more pronounced from AIS to MIA;
conversely, the increases in Tregs (T/NK-C6) and secretory B cells
(B-C7) were identified in the late stage of invasive LUAD (MIA to
IAC). To verify the impact of individual differences on our
conclusions, we quantified the reproducibility of subclusters of
each major cell type by the Wilcoxon test (Supplementary Fig. 7)
and IDR analysis (Supplementary Table 5).

The reciprocal interaction between cancer cells and TME cells
induces activation of TGF-β signaling in IAC
Cell signaling and communication between cancer cells and the
TME are crucial for the progression and metastasis of cancer48,49.
CellChat analysis revealed the top ten interacting pathways
among cells in LUAD based on our scRNA-seq results (Fig. 5a).
Among these pathways, the TGF-β pathway was further selected
for downstream analysis because of its pivotal role in cancer
invasion and metastasis50,51. Surprisingly, no communication via
TGF-β signaling between cancer cells and TME cells was observed
within the AIS and MIA, but this interaction was significantly
strengthened in IAC, especially in NK, mast and MALT B cells (Fig.
5b), which is consistent with the change in the number of cells of
interest in the previous single-cell data results. Notably, this
differential interaction of TGF-β signaling between cancer cells
and TME cells in the different stages of LUAD may be largely
attributed to the differential expression of TGF-β ligands or
receptors in different cell types. In AIS and MIA, cancer cells and
TME cells expressed low levels of TGF-β ligands (Fig. 5c and
Supplementary Table 6). It is conceivable that communication via
TGF-β signaling between cancer cells and TME cells was relatively
scant due to the lack of abundant stimulation of TGF-β ligands.
However, in the IAC, the levels of TGF-β ligands were widely
upregulated in both cancer cells and TME cells (Fig. 5c), which
suggested that both autocrine and paracrine mechanisms may
simultaneously promote constitutive communication of TGF-β
signaling between cancer cells and TME cells in IAC. This
differential interaction may be associated with the complex and
sometimes paradoxical role of TGF-β signaling in cancer: in early
stages, it inhibits cell growth as a tumor-suppressive pathway,
while in later stages, TGF-β promotes invasion and metastasis52.
Consistently, the expression levels of downstream targeted genes,
as well as the downstream factor p-SMAD2 of the TGF-β pathway,
were highly activated in IAC compared with AIS and MIA (Fig. 5d,
e, and Supplementary Table 7). Therefore, these results imply that
communication and interaction of TGF-β signaling between
cancer cells and TME cell-induced unrestrained activation of
TGF-β signaling in IAC may play a key role in the invasion of late-
stage LUAD.
Next, we used NicheNet to explore cell-to-cell communication

during the three stages of LUAD. As shown in Supplementary Fig.
8, we concluded that TGF-β pathway-related genes were mainly
expressed in cancer and NK cells, which is consistent with the
prediction results of CellChat. Moreover, ligand and receptor
prediction revealed that TGF-β pathway communication is mainly
achieved through the expression of ACVRL1, TGFBR1, and TGFBR2

in LUAD. Consistently, the expression levels of downstream target
genes and downstream genes of the TGF-β pathway, including
SMAD3, SMAD 6, and SMAD 7, were highly activated in the three
stages of LUAD (Supplementary Fig. 9).

Spatial distribution of Tregs in cancer regions mediates LUAD
invasion
Related studies have suggested that the spatial distribution of
TME cells and their density changes are equally important in the
malignant characterization of cancers53,54. To map the spatial
architecture of LUAD, six specimens (AIS: TD5, TD8; MIA: TD3, TD6;
and IAC: TD1, TD2) analyzed by scRNA-seq were further subjected
to ST. Based on HE staining, we annotated the different
morphological regions of the slices and divided the samples into
four different histological regions, including the cancer region,
normal epithelial region, stromal region, and lymph region (Fig.
6a). In addition, to examine individual variations in our ST data, we
quantified the spots of each region by Spearman correlation
(Supplementary Fig. 10) and IDR analysis (Supplementary Table 8).
To integrate the scRNA-seq information into spatial architecture, a
hypergeometric distribution analysis was carried out.
AIS specimen TD8 was divided into four regions by ST (Fig. 6b),

and the expression of marker genes further confirmed the
accuracy of the spatial division (Fig. 6c). As expected,
TM4SF1+ cancer cells (Epi-C0), 2 subtypes of NK cells (T/NK-C4:
GNLY and T/NK-C5: NKG7) and mast cells (Mye-C0: TPSB2) were
colocalized in the cancer region, while Tregs (T/NK-C6: FOXP3)
were not found in the cancer region (Fig. 6d). Similarly, another
AIS sample TD5 was divided into the same four final histological
regions by ST (Supplementary Fig. 11a, b). The hypergeometric
distribution showed that in the cancer region, TM4SF1+ cancer
cells (Epi-C0) colocalized with the two subtypes of NK cells (T/NK-
C4: GNLY and T/NK-C5: NKG7) and mast cells (Mye-C0: TPSB2, Mye-
C9: CPA3) (Supplementary Fig. 11c). GSVA revealed that the TGF-β
signaling pathway was enriched in the cancer region identified by
ST (Supplementary Fig. 11d). These data support the notion that
immune surveillance in the AIS stage is well functioning and can
prevent Tregs from infiltrating the cancer region.
The MIA sample (TD3) was also divided into four distinct regions

by ST (Fig. 6b). Hypergeometric distribution analysis showed that
TM4SF1+ cancer cells (Epi-C0) and Clara-like cancer cells (Epi-C1)
were highly enriched in the cancer region, and NK cells (T/NK-C4:
GNLY and T/NK-C5: NKG7) and mast cells (Mye-C0: TPSB2)
colocalized with the above two cancer cell subclusters, while
Tregs (T/NK-C6: FOXP3) and mast cells (Mye-C9: CPA3) were
absent from the cancer region (Fig. 6d). In another case of MIA
(TD6), the cancer cell subtypes enriched in the cancer region,
including Clara-like cancer cells (Epi-C1), NK cells (T/NK-C4: GNLY
and T/NK-C5: NKG7), Tregs (T/NK-C6: FOXP3) and mast cells (Mye-
C0: TPSB2, Mye-C9: CPA3), were also located in the cancer region
(Supplementary Fig. 11c). In addition, the cancer region of TD3
was enriched in oxidative phosphorylation, DNA repair, E2F
targets, and TNFα/NF-kB signaling (Supplementary Fig. 11d).
Finally, spatial and cellular data corresponding to two cases of

IAC were further investigated. In sample TD1, the cancer region,
normal epithelial region, stromal region and lymph region were
clearly distinguished by ST (Fig. 6b), which was highly consistent

Fig. 4 The role of immune cell infiltration in the early-stage LUAD invasion process. a UMAP of scRNA-seq showing eight subclusters of T/
NK cells (45,612 cells, left) and ten subclusters of myeloid cells (30,627 cells, right). b Proportions of eight subclusters of T/NK cells and ten
subclusters of myeloid cells in LUAD samples distributed in three stages. c Bulk RNA-seq confirmed that the expression of the FOXP3 gene
(Tregs, left) gradually increased from AIS to MIA to IAC, while the expression of both the FCN1 gene (monocytes, middle) and the TPSB2 gene
(mast cells, right) gradually decreased from AIS to MIA to IAC. d IF analysis validated protein expression levels during the LUAD invasion
process in TMAs. The protein expression levels of the FCN1 gene (monocytes, middle panel) and TPSB2 gene (mast cells, lower panel)
decreased, while those of the FOXP3 gene (Tregs, upper panel) increased from AIS to MIA to IAC. e Heatmap of GSVA results showing
differences in pathway activity among different T/NK-cell subclusters (left panel) from scRNA-seq. f Heatmap of GSVA results showing
differences in pathway activity among different myeloid cell subclusters from scRNA-seq.
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with the HE staining results (Fig. 6a). Hypergeometric distribution
analysis showed that TM4SF1+ cancer cells (Epi-C0) and UBE2C+
cancer cells (Epi-C6) were enriched in the cancer region, and CAFs
(Fib-1) and Tregs (T/NK-C6: FOXP3) colocalized with the above

cancer cell subclusters in the cancer region (Fig. 6d). Similarly, TD2
was also shown to contain a cancer region by HE staining analysis
but had no clear stromal region or lymph region (Supplementary
Fig. 11a, b). The cancer cell subtypes enriched in the cancer region

Fig. 5 Maps showing the role of the TGF-β signaling pathway in the dialog between cancer cells and the TME. a Radar chart from CellChat
data showing the major signaling pathways that mediate cell-to-cell interactions in LUAD. b TGF-β signaling pathway interactions between
cancer cells and nine specific cell types of the TME from scRNA-seq data. The maps show TGF-β pathway interactions between cancer cells and
cells of the immune microenvironment in AIS (left panel), MIA (middle panel), and IAC (right panel). c Heatmaps showing the distributions of
ligands and receptors in the TGF-β pathway in the three stages of LUAD (upper: AIS, middle: MIA, lower: IAC). d GSVA of scRNA-seq showing
that differences in the expression of genes (54 genes) downstream of the TGF-β pathway between normal cells and cancer cells differed
among the three stages of LUAD. e TMAs were used to verify the expression of a gene related to TGF-β phosphorylation (p-Smad2) in the
three stages of LUAD.
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were CRABP2+ cancer cells (Epi-C3), and NK cells (T/NK-C5: NKG7)
and mast cells (Mye-C0: TPSB2, Mye-C9: CPA3) were also located in
the cancer region (Supplementary Fig. 11c). GSVA analysis showed
that the cancer region of TD2 (IAC) was enriched in KRAS signaling
down (Supplementary Fig. 11d). These data demonstrate the

extensive infiltration of Tregs into the cancer region as LUAD
progresses to the IAC stage.
Interestingly, by comparing the vasculature region in cancer

and the normal region in AIS and IAC samples, we found that the
cancer vasculature region of IAC presented a more pronounced
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number of blood vessels in H&E (Fig. 6e, f) and higher expression
levels of VEGFs (Fig. 6g) compared with the normal vasculature
region. Conversely, both the density of blood vessels and the
expression levels of VEGFs between normal and cancer vascu-
lature regions of AIS did not produce obvious differences (Fig.
6e–g). This finding suggested that angiogenesis may significantly
contribute to the invasive process of LUAD.
To categorize the mixed cell types of each spot, we performed

the RCTD method on spatially resolved transcriptomic data with
the paired scRNA-seq data. Clara-like cancer cells, as a less
malignant cancer cell type of early-stage LUAD, were identified in
both specimens of AIS (Supplementary Fig. 12 and Supplementary
Fig. 13), which is consistent with our single-cell results as well as
the cancer cell pathological features of AIS of the lung. When
LUAD progressed to the IAC stage, RCTD data showed that
UBE2C+ cancer cells infiltrated the cancer region (Supplementary
Fig. 12). To map the per-cell gene signatures from single-cell
sequencing data to each spatial spot, we performed Cell-ID, which
is a clustering-free multivariate statistical method (Supplementary
Fig. 14). Interestingly, TM4SF1+ cancer cells were found in AIS,
MIA and IAC. Further analysis showed that in AIS, except for
TM4SF1+ cancer cells, the remaining cancer cells were mainly
Clara-like cancer cells, and the biological behavior of such cells
was relatively mild. However, in IAC, the most malignant
UBE2C+ cancer cells gradually dominate, which may explain
why the prognosis of IAC is poor. The above results are basically
consistent with the results of hypergeometric distribution analysis,
but this method is not satisfactory for the identification of the
spatial distribution of TME cells.
Taken together, our results indicate that as LUAD progresses

from precancer to IAC, Tregs are spatially recruited in cancer
regions, while NK-cell and mast cell infiltration are absent from
this region. Moreover, we found that abnormalities in cancer
blood vessels play an important role in the invasion of LUAD from
AIS to IAC.

The peripheral cancer region was more active than the central
cancer region analyzed by ST
To track the spatial distribution and biological significance of the
four cancer subpopulations identified by scRNA-seq, we reclus-
tered the cancer region into subregions by ST. In the AIS sample of
TD8, the cancer-rich regions in the slices were further divided into
transcription-related subregions, which consisted of a central
region (region 1, black) and the peripheral region (region 0, red)
(Fig. 7a). The hypergeometric distribution was used to identify
overlapping cell type-specific scRNA-seq gene expression data
and spatial ST gene expression data (Fig. 7b). We found that Clara-
like cancer cells (Epi-C1) were highly enriched in the peripheral
region (region 0), and the central region (region 1) was dominated
by TM4SF1+ cancer cells (Epi-C0) (Fig. 7c). GSVA showed that
several oncogenic signaling pathways, including Wnt/β-catenin
signaling, MYC target v2 and angiogenesis pathways, were highly
activated in the peripheral region (region 0), which were not
observed in the central region (region 1) (Fig. 7d, left panel). This
finding suggested that the peripheral cancer region may display
more active oncogenic features than the central cancer region,
supporting the notion that the acquisition of invasive properties of

cancer cells may be more likely to originate from the peripheral
region than from the central region. Notably, TGF-β signaling
pathway-related genes were highly expressed in the central
region compared to the peripheral region (Fig. 7e). Given the
finding that TGF-β signaling inhibits cell growth in the early stages
of cancer52, the central region of AIS may seem to be inert
compared with the active region (peripheral region). Consistently,
proliferation indices, such as PCNA, were highly expressed in the
peripheral region compared with the central region (Fig. 7f). We
also used monocle 3 implemented in SPAPA to perform a
pseudotime analysis of different regions (edge and core) of the
tumor, which confirmed our results, showing a trend of
differentiation from the center to the edge (Supplementary
Fig. 15).
In MIA the cancer region of the slice from sample TD3 was

partitioned into three subregions: cancer regions 0, 2 and 3
(Fig. 7a). Consistent with AIS, central cancer subregion 0 of TD3
was mainly dominated by TM4SF1+ cancer cells (Epi-C0), while
peripheral cancer region 2 was mainly dominated by Clara-like
cancer cells (Epi-C1) (Fig. 7c). However, the potential pathways
enriched in the peripheral and central regions of MIA varied
from those in AIS. As shown in Fig. 7d (middle panel), the EMT
pathway was highly activated in peripheral region 2 but inert in
central region 0. The MIA sample TD6 had two more subregions
(regions 5 and 6) (Supplementary Fig. 16a, b). Clara-like cancer
cells (Epi-C1) were highly enriched in region 6, and
TM4SF1+ cancer cells (Epi-C0) were highly enriched in regions
4 and 5 (Supplementary Fig. 16c). GSVA showed that region 0
mainly showed activation of PI3K/AKT signaling that was
inhibited in the remaining cancer regions (Supplementary
Fig. 16d).
Finally, by analyzing IAC samples (TD1, TD2), we found that the

cancer region could be separated into two cancer subregions 0
and 5 with clear boundaries (Fig. 7a). Both cancer regions 0 and 5
were highly enriched with TM4SF1+ cancer cells (Epi-C0) and
UBE2C+ cancer cells (Epi-C6), especially region 5 (Fig. 7c), which
was consistent with the findings of scRNA-seq that the propor-
tions of both TM4SF1+ (Epi-C0) and UBE2C+ (Epi-C6) cancer cells
were dramatically elevated in IAC (Fig. 2c). The DNA repair, MYC
target v2, and oxidative phosphorylation pathways were highly
activated in cancer region 0 compared with those in cancer region
5 (Fig. 7d). TGF-β signaling pathway-related genes were highly
expressed in cancer region 5 compared with region 0 (Fig. 7e). In
addition, sample TD2 was divided into four subregions (Supple-
mentary Fig. 16a, b). Regions 0 and 5 of the cancer overlapped
with TM4SF1+ cancer cells (Epi-C0), and regions 1 and 3 of the
tumor overlapped mainly with CRABP2+ cancer cells (Epi-C3)
(Supplementary Fig. 16c). The cancer-related pathways (EMT, MYC
target v2, and oxidative phosphorylation pathways) were mainly
activated in region 3 of the tumor, located in the peripheral area
(Supplementary Fig. 16d). Collectively, as LUAD progresses from
AIS to IAC, cancer cells show increasingly clear spatial distribution,
the malignant features of tumor margins are more prominent, and
the spatial distribution of cancer cells may be more important
than the type of cancer cells.
In conclusion, these findings indicate that the process of AIS to

MIA is a confirmed key step for LUAD invasion, and the

Fig. 6 Effect of the spatial distribution of the TME on the invasion of early-stage LUAD. a HE staining showing histologically distinct
regions of AIS (TD8), MIA (TD3) and IAC (TD1) samples. Pink: normal epithelium region; green: lymph region; purple: stromal region; yellow:
cancer region. b Spatial transcriptome atlas depicting the spatial regions (cancer region, stromal region, lymph region and normal epithelial
region) of samples representing the three stages of LUAD. c Marker genes of the four spatial regions: cancer region, stromal region, lymph
region and normal epithelial region. d Heatmaps obtained upon hypergeometric distribution analysis of all specific cell types identified by
scRNA-seq analysis and regions defined by ST analysis (left panel: AIS, TD8; middle panel: MIA, TD3; right panel: IAC, TD1). e Identification of
the cancer vasculature region and normal vasculature regions in AIS patient (TD8) by ST analysis. f Identification of the cancer vasculature
region and normal vasculature regions in IAC patient (TD1) by ST analysis. g Expression of vascular endothelial cell-related (angiogenesis-
related) genes in different vascular regions.
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UBE2C+ cancer cell subpopulation was found to play a vital role
in driving this process. Multiomics spatial mapping of LUAD
proved that TGF-β signaling interactions between cancer cells and
the TME and spatial changes that regulate immune escape are
involved in LUAD invasion. (Fig. 7g).

DISCUSSION
Due to the limitations of traditional bulk RNA-seq, our current
understanding of the dynamics of LUAD invasion from AIS to IAC
is rudimentary. Here, we identified four cancer cell subpopulations
at the single-cell level. The UBE2C+ cancer cell subpopulation was
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involved in the early and late stages of the LUAD invasion process,
suggesting that UBE2C may be the initiator in LUAD invasion,
especially in the scenario that UBE2C is found to be a driver gene
in the metastasis of LUAD and other tumors55–58. The spatial
distribution of these four cancer cell subpopulations of interest
was also the focus of our research. To the best of our knowledge,
we mapped the spatial heterogeneity of LUAD for the first time to
integrate cell type-specific scRNA-seq data and position-specific
ST data through hypergeometric distribution analysis16,59. Inter-
estingly, UBE2C+ cancer cells are mainly distributed in the IAC
and in the peripheral cancer region, which represent more active
tumor biological behavior60,61. In light of these findings, UBE2C
may serve as a candidate gene for the pathological identification
of preneoplasia and IAC of LUAD.
Controversy regarding the cellular origin of LUAD has seized

great momentum recently. The traditional point of view states
that LUAD mainly originates from AT2 cells45,62. However,
several independent studies have reported that Clara cells
may be the cellular origin of LUAD63,64. Sutherland et al.65

proved that both KRAS activation and TP53 loss contributed to
the transformation of Clara cells and AT2 cells into malignant
LUAD cells. However, Trp53F/F mice infected with
Adeno5–SPC–Cre and Adeno5–CC10-Cre viruses exhibit differ-
ences in tumor profiles, indicating that LUAD originates from
both AT2 and Clara cells by varying mechanisms. Even from the
same origin, activation of KRAS induced hyperplasia and
adenoma from Clara cells during embryonic development but
only led to pulmonary hyperplasia in adults66, suggesting that
oncogenic transformation of Clara cells depends on the
developing stage. Pseudochronological analysis of scRNA-seq
data to predict the differentiation potential of cells has been
used to study the origin of tumor cells67,68. In this study, we
demonstrated that Clara-like cancer cells (Epi-C1) coexisted with
three other LUAD subtypes in three stages of LUAD, and
pseudochronological analysis of Clara cells and AT2 cells
demonstrated that both can be converted to LUAD cells. These
data at the single-cell level in combination with other
independent studies at the genetic level provided evidence
that LUAD could originate from both Clara cells and AT2 cells. In
this study, we demonstrated that Clara-like cancer cells (Epi-C1)
coexisted with three other LUAD subtypes in three stages of
LUAD, and pseudochronological analysis of Clara cells and AT2
cells demonstrated that both can be converted to LUAD cells.
These data at the single-cell level in combination with other
independent studies at the genetic level provided evidence that
LUAD could originate from both Clara cells and AT2 cells.
Changes in the TME during cancer evolution from AIS to MIA to

IAC suggest that the early carcinogenesis of LUAD is a progressive
process formed by host immune surveillance4,9,10. In a recent
study, NK and MALT B cells were demonstrated to be obviously
increased in the early stage of invasive LUAD (AIS to MIA)
compared with the increase in Treg and secretory B cells in the
late stage of invasive LUAD (MIA to IAC). These results were
consistent with previous research9,10. In addition, mast cells and
monocytes were identified to be constantly decreased during the
invasive process of LUAD, suggesting that myeloid cells were also
involved in the invasion of LUAD. Notably, from the ST results, in

AIS, there was no Treg infiltration in the cancer region, while in
IAC, cancer cells recruited Tregs into the cancer region, suggesting
that the accumulation of Tregs in the cancer region initiates the
early invasion process of LUAD. Interestingly, the strong
interaction-induced activation of TGF-β signaling between cancer
cells and the TME was identified in IAC, which was not observed in
AIS and MIA, consistent with the crucial and established role of
TGF-β signaling in the late stage of cancer metastasis52,69.
Therefore, an in-depth understanding of the DEGs and specific
cell subpopulations during the separate stages of invasive LUAD,
as well as the interaction and communication between cancer
cells and the TME in the invasive process of LUAD, will facilitate
the early detection of metastatic LUAD and the development of
targeted therapy against LUAD at different stages.
Limitations of our study should be noted when interpreting and

extrapolating our data. First, individualized progression of invasive
LUAD could not be neglected and assessed in separate patients.
Second, tumor heterogeneity should be analyzed in detail in more
sections of the same tissue, although the tumor tissues and slices
were optically maintained. Last but not least, since only individual
spatial information was analyzed separately, it was not possible to
integrate comprehensive spatial information for all LUAD patients
due to the limitations of ST techniques for comparative analysis
between groups.
In summary, we mapped a genetic and spatial atlas of the

dynamic evolution of invasive LUAD using a multiomics approach
consisting of synchronous scRNA-seq and ST to determine the
DEGs, specific cell subpopulations and cell interactions, which will
be helpful and beneficial for the identification and development
of individualized therapeutic strategies in invasive LUAD.
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