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Apocrine carcinoma is a rare breast cancer subtype. As such, the genomic characteristics of apocrine carcinoma with triple negative
immunohistochemical results (TNAC), which has been treated as triple negative breast cancer (TNBC), have not been revealed. In this
study, we evaluated the genomic characteristics of TNAC compared to TNBC with low Ki-67 (LK-TNBC). In the genetic analysis of 73
TNACs and 32 LK-TNBCs, the most frequently mutated driver gene in TNAC was TP53 (16/56, 28.6%), followed by PIK3CA (9/56, 16.1%),
ZNF717 (8/56, 14.3%), and PIK3R1 (6/56, 10.71%). Mutational signature analysis showed enrichment of defective DNA mismatch repair
(MMR)-related signatures (SBS6 and SBS21) and the SBS5 signature in TNAC, whereas an APOBEC activity-associated mutational
signature (SBS13) was more prominent in LK-TNBC (Student’s t test, p < 0.05). In intrinsic subtyping, 38.4% of TNACs were classified as
luminal A, 27.4% as luminal B, 26.0% as HER2-enriched (HER2-E), 2.7% as basal, and 5.5% as normal-like. The basal subtype was the most
dominant subtype (43.8%) in LK-TNBC (p < 0.001), followed by luminal B (21.9%), HER2-E (21.9%), and luminal A (12.5%). In the survival
analysis, TNAC had a five-year disease-free survival (DFS) rate of 92.2% compared to 59.1% for LK-TNBC (P= 0.001) and a five-year
overall survival (OS) rate of 95.3% compared to 74.6% for LK-TNBC (P= 0.0099). TNAC has different genetic characteristics and better
survival outcomes than LK-TNBC. In particular, normal-like and luminal A subtypes in TNAC have much better DFS and OS than other
intrinsic subtypes. Our findings are expected to impact medical practice for patients diagnosed with TNAC.
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INTRODUCTION
Apocrine carcinoma is a rare breast cancer (BC) subtype accounting
for 1–4% of all BCs1. The 2019 WHO classification of breast tumors
defined apocrine carcinoma as a distinct, special type of BC
characterized by large round nuclei with plump, eosinophilic,
granular, and sharp-bordered cytoplasm2. Apocrine carcinomas
frequently express androgen receptor (AR) but are estrogen receptor
(ER) and progesterone receptor (PgR) negative3. Therefore, apocrine
carcinomas may be divided into two BC subtypes based on human
epidermal growth factor receptor-2 (HER2) status: triple negative
breast cancer (TNBC) and HER2-positive BC1,3.
TNBC is ER- and PgR-negative, does not overexpress HER2, and

is usually included in the “basal-like BC” group according to the
intrinsic subtype4–7. TNBCs account for 15% of all BCs, and they
generally have poor clinical outcomes4,7. While this aggressive
phenotype is common, there is a small group of TNBCs with
favorable clinical outcomes showing a low risk of recurrence and
death8. Low-risk TNBCs comprise salivary gland-type BC, TNBC
with high tumor-infiltrating lymphocytes (TILs), and carcinoma
with apocrine differentiation9. Apocrine carcinoma with triple
negative immunohistochemical results (TNAC) has a low Ki-67

labeling index and is very different from most aggressive TNBCs,
although the underlying molecular characteristics of apocrine
breast cancer have been poorly studied10.
Previous study has demonstrated that TNAC has a poorer

response to (neo)adjuvant chemotherapy than other non-apocrine
TNBC11. However, survival analyses have shown discordant results.
One previous study showed similar survival outcomes in TNAC
and TNBC, whereas another reported poor prognosis in TNAC, and
yet another reported better survival outcome in TNAC than in
TNBC9,12,13. Therefore, comprehensive genomic profiling of TNAC
could provide a detailed understanding of the molecular biology
and prognosis and suggest potential therapeutic targets for
individualized treatment. In this study, we evaluated the genomic
and clinical characteristics of TNAC and compared them to those
of TNBC with low Ki-67 expression.

METHODS
Patients
Tumors were selected from 73 TNAC patients who underwent curative
surgery at Samsung Medical Center, Seoul, Korea. In addition, we selected
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32 TNBCs that had Ki-67 levels similar to those of TNACs from patients who
underwent curative surgery. Independent pathological review was
performed to determine the apocrine type and triple negativity of BC.
The Institutional Review Board of Samsung Medical Center approved the
study protocol (IRB No: 2020-05-159).

Whole-exome sequencing
Extraction of DNA. DNA was extracted from formalin-fixed paraffin-
embedded (FFPE) blocks or fresh frozen (FF) tissues. A skilled pathologist
reviewed hematoxylin and eosin (H&E)-stained sections from the FFPE
blocks and outlined areas containing representative invasive breast
carcinoma on the slide. FFPE slides were manually microdissected to
maximize tumor purity. Genomic DNA was extracted using the ReliaPrep
FFPE gDNA Miniprep System (Promega), the QIAamp DNA Mini Kit
(Qiagen), and the QIAamp DNA Blood Mini Kit (Qiagen) for FFPE, FF tissues,
and buffy coats, respectively.

Sequencing: Illumina NovaSeq6000 platform. For generation of standard
exome capture libraries, we used 1 µg of input gDNA and the Agilent
SureSelect Target Enrichment protocol for generating an Illumina paired-
end sequencing library. In all cases, the SureSelect Human All Exon V6
probe set was used. DNA concentration and DNA quality were measured
by PicoGreen and agarose gel electrophoresis. We used 1 μg of each cell
line’s genomic DNA diluted in EB buffer and sheared to a target peak size
of 150–200 bp using the Covaris LE220 focused-ultrasonicator (Covaris,
Woburn, MA) according to the manufacturer’s recommendations. An 8
microTUBE Strip was loaded into the tube holder of the ultrasonicator, and
DNA was sheared using the following settings: mode, frequency sweeping;
duty cycle, 10%; intensity, 5; cycles per burst, 200; duration, 60 s × 6 cycles;
temperature, 4–7 °C. The fragmented DNA was repaired, an ‘A’ was ligated
to the 3′ end, and Agilent adapters were ligated to the fragments.
Once ligation had been assessed, the adapter ligated product was PCR

amplified. The final purified product was then quantified using the
TapeStation DNA screentape D1000 (Agilent). For exome capture, 250 ng
of DNA library was mixed with hybridization buffer, blocking mixture,
RNase block and 5 µl of SureSelect all exon capture library, according to
the standard Agilent SureSelect Target Enrichment protocol. Hybridization
to the capture baits was conducted at 65 °C using a heated thermal cycler
lid option at 105 °C for 24 h on a PCR machine. The captured DNA was then
washed and amplified. The final purified product was then quantified using
qPCR according to the qPCR Quantification Protocol Guide (KAPA Library
Quantification kit for Illumina Sequencing platforms) and qualified using
the TapeStation DNA screentape D1000 (Agilent). Indexed libraries were
then sequenced using the NovaSeq6000 platform (Illumina, San Diego,
USA) by Macrogen Incorporated.

Sequence alignment. Paired-end reads were aligned to the GRCh38
human reference genome using the Burrows Wheeler aligner14 (BWA
v0.7.17), and BAM (binary alignment/map) files were produced for each
sample. Local realignment and quality score recalibration processes were
performed using Genome Analysis Toolkit15 (GATK v4.2). Sequencing
quality was evaluated using fastQC and the Picard CollectMultipleMetrics
tool (https://broadinstitute.github.io/picard/).

Somatic point mutation detection. The TNAC dataset consists of 54
duplicated tumor samples and 2 nonduplicated tumor samples (C009,
C012) with matched normal controls. The LK-TNBC dataset consists of 27
duplicated tumor samples with matched normal controls.
Mutations were called for each duplicate tumor sample with matched

control. For nonduplicated tumor samples (C009, C012), fastq files were
split randomly into two using the SeqKit tool. Somatic point mutations and
short indels were called using MuTect216 from GATK v4.2. The filtering
process was performed to reduce sequencing or data processing errors
from FFPE breast samples17. We selected only variants detected in both
duplicate bam files for one sample. To detect significantly mutated driver
genes, the dNdScv algorithm18 was applied. We selected variants with p
values less than 0.001 in TNAC and LK-TNBC.
TCGA luminal A and TCGA TNBC somatic mutations were downloaded

from the GDC data portal5.

Mutational signature analysis. Mutational signature analysis was per-
formed with the deconstructSigs19 R package. It calculates the proportion
of 30 COSMIC signatures for each sample. We selected signatures that
showed a significant difference in proportion between TNAC and LK-TNBC,

and between hypermutated samples and nonhypermutated samples in
TNAC. Signatures that showed no significant difference when outliers were
removed were excluded. Significance was calculated by Student’s t test.
To examine DNA mismatch repair (MMR)-related signatures in more

detail, we assessed the frequency of MMR-related gene mutations. A total
of 13 MMR-related genes, including MSH2, MSH3, MSH4, MSH5, MSH6,
MLH1, MLH3, PMS1, PMS2, POLD1, POLB, POLE, and POLG, were used for
analysis.

Somatic copy number alteration analysis. CNVkit v0.9.9 was used to call
somatic copy number alterations (SCNAs) on whole-exome sequencing
data. In the results, log2 depth ratios greater than 0.2 were considered to
indicate copy number gain, and ratios less than −0.2 were considered to
indicate copy number loss.
The significance of somatic copy number alterations was evaluated

using GISTIC2.020 (Version 2.0.23), which deconstructs SCNAs into broad
and focal events. We added the ranges of 1,000,000 paddings considering
information on centromere and telomere positions from UCSC hg38.
Cancer-related gene sets used for matching the genes covering the
resulting peaks were downloaded from the COSMIC Cancer Gene Census
(CGC) database.

Whole-transcriptome sequencing
Extraction of RNA. RNA was extracted from formalin-fixed paraffin-
embedded (FFPE) blocks or fresh frozen (FF) tissues. A skilled pathologist
reviewed hematoxylin and eosin (H&E)-stained sections from the FFPE
blocks and outlined areas containing representative invasive breast
carcinoma on the slide. FFPE slides were manually microdissected to
maximize tumor purity.
Total RNA was extracted using the ReliaPrep FFPE Total RNA Miniprep

System (Promega) and RNeasy Mini Kit (Qiagen) for FFPE and FF
specimens, respectively, according to the manufacturer’s protocol. Nucleic
acid yield and purity were assessed using a NanoDrop ND-1000 Spectro-
photometer (NanoDrop Technologies, Thermo-Fisher Scientific, MA, USA).

Sequencing: Illumina NovaSeq6000 platform. The total RNA concentration
was calculated by Quant-IT RiboGreen (Invitrogen). To determine the
DV200 (% of RNA fragments >200 bp) value, samples were run on the
TapeStation RNA screentape (Agilent). Then, 100 ng of total RNA was
subjected to sequencing library construction using a TruSeq RNA Access
library prep kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s protocols. Briefly, the total RNA was fragmented into
small pieces using divalent cations under elevated temperature. The
cleaved RNA fragments were copied into first-strand cDNA using
SuperScript II reverse transcriptase (Invitrogen, #18064014) and random
primers. This was followed by second-strand cDNA synthesis using DNA
polymerase I, RNase H, and dUTP. These cDNA fragments then went
through an end-repair process; single ‘A’ bases were added, and the
adapters were ligated. The products were purified and enriched via PCR
to create cDNA libraries. All libraries were normalized, and six libraries
were pooled into a single hybridization/capture reaction. Pooled libraries
were incubated with a cocktail of biotinylated oligos corresponding to
coding regions of the genome. Targeted library molecules were
captured via hybridized biotinylated oligo probes using streptavidin-
conjugated beads. After two rounds of hybridization/capture reactions,
the enriched library molecules were subjected to a second round of PCR
amplification. The captured libraries were quantified using KAPA Library
Quantification kits for Illumina Sequencing platforms according to the
qPCR Quantification Protocol Guide (KAPA BIOSYSTEMS, #KK4854) and
qualified using the TapeStation D1000 ScreenTape (Agilent Technolo-
gies, # 5067-5582). Indexed libraries were submitted to an Illumina
NovaSeq6000 (Illumina, Inc.), and paired-end (2×100 bp) sequencing was
performed by Macrogen Incorporated.

Sequence alignment and quantification. Whole transcriptome sequencing
reads were mapped to the GRCh38 human reference genome from
GENCODE v38 using STAR v2.7.9a. Fragments per kilobase of exon model
per million mapped fragments (FPKM) values were obtained using RSEM
v1.3.2. Sequencing quality was evaluated using fastQC and FastQ Screen
0.14.0.

Batch correction. Batch effects between FF and FFPE samples were
corrected using ComBat-seq21, and then FPKM normalization was
performed using the convertCounts function in DGEobj.utils of the R
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package. To conduct batch correction between the TCGA cohort and our
batch-corrected dataset, the ComBat22 function in the sva package was
used. The expression profiles were transformed as follows: log2(FPKM+ 1).

Intrinsic subtype prediction. Intrinsic subtypes of each sample were
determined by the ‘molecular.subtyping’ function in the genefu23

bioconductor package (v2.26.0). The subtyping classification model was
‘pam50’, which identifies breast cancer molecular subtypes as luminal A,
luminal B, HER2-enriched, basal, and normal-like subtypes based on the
PAM50 genes. Hierarchical clustering based on the Ward D2 method with a
Euclidean distance measure was used to co-cluster our cohort and the
TCGA BRCA cohort based on the PAM50 genes. We transformed the
expression matrix by log2 (FPKM+ 1) and then used pheatmap v1.0.12 in
the R package to scale the results.

Lehmann subtype prediction. Lehmann subtyping24 was performed
using a web-based subtyping tool, TNBCtype25. Input samples were
assigned to one of the TNBC subtypes of BL1 (basal-like 1), BL2 (basal-
like 2), IM (immunomodulatory), M (mesenchymal), MSL (mesenchymal
stem-like), LAR (luminal androgen receptor), and UNS (unstable). Genes
with a mean expression values greater than 5 FPKM across all samples
were used as input data. If the number of genes which had higher level
of gene expressions compared with that of ESR1 was less than 75% of
samples, the sample was classified as ER-positive rather than TNBC and
was excluded. Five samples in our dataset (C025, C052, C062, K002,
K040) and seven samples of TCGA TNBC data5 (TCGA-A2-A0ST-01A,
TCGA-AR-A0U1-01A, TCGA-B6-A0IE-01A, TCGA-B6-A0IK-01A, TCGA-B6-
A0RG-01A, TCGA-B6-A0RN-01A, TCGA-BH-A1EW-01A) were predicted to
be ER-positive and removed before running TNBCtype. These excluded
samples were classified as ‘unstable’. Hierarchical clustering based on
the Ward D2 method with a Euclidean distance measure was used to co-
cluster our cohort and the TCGA TNBC cohort. Genes that distinguished
Lehmann subtypes24 were selected for clustering. We transformed the
expression matrix by log2 (FPKM+ 1) and then used pheatmap v1.0.12 in
the R package to scale the results.

Burstein and FUSCC subtyping. In Burstein subtyping26, hierarchical
clustering based on the Ward D2 method with a Euclidean distance
measure was used to cluster our cohort into Burstein subtypes of luminal
androgen receptor (LAR), mesenchymal (MES), basal-like immunosup-
pressed (BLIS), and basal-like immune-activated (BLIA). Fifty-five genes
significantly overexpressed in each subtype defined by Burstein et al. 26

were selected for clustering to determine the characteristics of TNAC and
LK-TNBC. We transformed the expression matrix by log2 (FPKM+ 1) and
then used pheatmap v1.0.12 in the R package to scale the results.
In FUSCC subtyping27, hierarchical clustering based on the Ward D2

method with a Euclidean distance measure was used to co-cluster our
cohort and the TCGA TNBC cohort to identify the subtype mainly grouped
with TNAC and LK-TNBC. The TCGA TNBC cohort annotated with both
Lehmann subtype and FUSCC classification was provided by Jiang, Yi-
Zhou, et al. 28. The top 2000 most variable genes in the TCGA cohort were
selected for clustering. We transformed the expression matrix by
calculating log2 (FPKM+ 1) and then used pheatmap v1.0.12 in the R
package to scale the results.

Differential gene expression (DGE) analysis and enriched pathway analysis.
DGE analysis between TNAC and LK-TNBC was performed using DESeq2.
Genes with |log2-fold change| > 2, p value < 0.01, and adjusted p value <
0.01 were considered differentially expressed genes (DEGs). We performed
gene set enrichment analysis29 (GSEA v3.0) to identify pathways enriched
in TNAC or LK-TNBC. Pathways with FDR q-values less than 0.05 were
selected.
DGE analysis was also performed between intrinsic subtypes of TNAC

using NOISeqBIO30 to compare one subtype to the others. Genes with
| log2-fold change| > 1 and probability > 0.95 were considered DEGs. Gene
set enrichment analysis was performed using Enrichr31. Significantly
enriched pathways from MSigDB Hallmark 2020, KEGG 2021 Human, and
GO Biological Process 2021 were selected (adjusted p value < 0.05).

Cell type estimation analysis. The abundance of 29 cell types as defined in
Wu et al. 32 was used for deconvolution analysis of our bulk WTS data.
CIBERSORTx33 was mainly performed to estimate cell types for each
sample, and MuSiC34 v0.2.0 and BisqueRNA35 v1.0.5 were used to verify the
results of CIBERSORTx. Cell types that showed significant differences with

at least one of these two additional tools were selected. Significance was
calculated by the Wilcoxon signed-rank test.

Gene fusion analysis. Arriba36 v2.1.0 was used to detect gene fusions and
selected those with confidence of ‘high’ or ‘medium’. Fusion genes
detected in healthy individuals (n= 87)37 with a frequency of less than 0.05
were filtered. The difference in the frequency of gene fusion events was
compared between TNAC and LK-TNBC and between intrinsic subtypes.
Significance was calculated by the Wilcoxon signed-rank test and Kruskal‒
Wallis test.

Statistical analysis
We evaluated the differences between TNAC and Ki-67-matched TNBC
(low Ki-67 TNBC; LK-TNBC) using Fisher’s exact test. Disease-free survival
(DFS) was defined as the duration of survival without any signs or
symptoms of disease after primary treatment. Overall survival (OS) was
defined as the duration between curative surgery and death. DFS and OS
were analyzed using the Kaplan‒Meier method. Cox proportional hazard
regression was used to estimate hazard ratios and 95% confidence
intervals (CIs).

RESULTS
Baseline characteristics
We described the baseline clinical and pathological characteristics
of TNAC and LK-TNBC in Supplementary Table 1. Only stage at
diagnosis was different between TNAC and LK-TNBC (P= 0.03),
while no significant differences were observed in other character-
istics, including nuclear grade, histologic grade, Ki-67, and status
of (neo)adjuvant treatment.

Somatic mutations of TNAC
We identified 18,747 and 2097 nonsynonymous somatic point
mutations from TNAC and LK-TNBC WES data, respectively.
Somatic point mutations were detected using Mutect2 with a
filtering process as described in the Methods. The most
frequently mutated driver gene in TNAC was TP53 (16/56,
28.6%), followed by PIK3CA (9/56, 16.1%), ZNF717 (8/56, 14.3%),
and PIK3R1 (6/56, 10.71%) (Fig. 1A). In our cohort, the incidence
of TP53 mutations was lower in TNAC than in both the LK-TNBC
and TCGA-TNBC datasets, in line with previous studies38,39.
However, PIK3CA mutation was more frequently observed in the
LK-TNBC and TCGA-luminal A datasets than in the TNAC and
TCGA-TNBC datasets. Furthermore, the PIK3R1 p.M326I mutation
identified from one TNAC patient was dominant in luminal type
cases, especially in the luminal A subtype40 (Fig. 1B).

Mutational signatures
Based on COSMIC single base substitution (SBS) signatures, the
proportions of 30 SBS signatures were calculated for all TNAC and
LK-TNBC samples using the deconstructSigs algorithm (Fig. 2A).
We identified 28 mutational signatures in total, and SBS1 was
observed in almost all BC samples. In detail, defective DNA
mismatch repair (MMR)-related signatures (SBS6 and SBS21) and
the SBS5 signature were more enriched in TNAC than in LK-TNBC.
In addition, MMR-associated genes were more frequently mutated
in TNAC (8/56, 14.29%) than in LK-TNBC (1/27, 3.70%), although
the difference was not significant (Fisher’s exact test, P= 0.2595).
However, an APOBEC activity-associated mutational signature
(SBS13) was more prominent in LK-TNBC (Student’s t test, p < 0.05)
(Fig. 2B).
We found eight TNAC and seven LK-TNBC samples with a high

tumor mutational burden (TMB) (> 10 mutations per Mb) (Fig. 2A).
High-TMB TNAC samples had more than 20 times higher TMB
values (mean value: 368.72) than high-TMB LK-TNBC samples
(mean value: 17.85). Previously, APOBEC activity (SBS2 and SBS13)
and MMR-related mutational signatures (SBS3, SBS6, SBS10, SBS15,
and SBS20) were reported to be the most common in high-TMB
BC samples41. In our TNAC cohort, SBS20 was significantly
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enriched in hypermutated samples compared to non-
hypermutated samples (Student’s t test, p < 0.05) (Fig. 2B).
Interestingly, all MMR gene mutations were identified only in

the eight hypermutated TNAC samples. The MLH3:p.R1251W
variant of C051 was identified by visual inspection with an
integrative genomics viewer.
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Somatic copy number alterations
Overall, somatic copy number alterations (SCNAs) in the entire
genome were less prevalent in TNAC than in LK-TNBC (Wilcoxon
signed-rank test, p < 0.05) (Supplementary Fig. 1). However, TNAC
had significantly more frequent amplification of 7p and 8q, and
deletion of 6q, 9p, and 18 than LK-TNBC, with q-values less than
0.05 based on a GISTIC20 analysis (Supplementary Table 2). All the
TNAC-specific broad events of significant gains and losses were
frequently observed in the luminal A subtypes of the TCGA BRCA
dataset5. In addition, 6q was reported to be frequently deleted in
the luminal androgen receptor (LAR) subtype among Burstein
TNBC subtypes26.
For focal SCNAs, we identified four significant TNAC-specific

focal deletions in 1q44, 9p21.3, 14q32.33, and 17p12 and one focal
amplification in 5q35.3 (q-value < 0.05, Supplementary Table 2).
9p21.3 focal deletion spanning CDKN2A and 17p12 deletion
overlapping MAP2K4 are associated with the luminal A subtype of
the TCGA breast cancer cohort5. Furthermore, 9p21 deletion
covering CDKN2A was reported to be frequent in the Burstein LAR
subtype26 and FUSCC LAR subtype28 patients. Other focal SCNA
information is described in Supplementary Table 2.

Intrinsic subtype
PAM50 prediction was performed using 73 TNACs, 32 LK-TNBCs, and
466 BCs from the TCGA BRCA dataset (Fig. 3A). Of the 73 TNACs, 28
(38.4%) were classified as luminal A, 20 (27.4%) as luminal B, and 19
(26.0%) as HER2-enriched (HER2-E) subtype. Only two (2.7%) TNAC
samples were categorized as basal, while four (5.5%) were classified
as normal-like. In contrast, in LK-TNBCs, the basal intrinsic subtype
was the most dominant subtype (14/32, 43.8%), followed by luminal
B (7/32, 21.9%), HER2-E (7/32, 21.9%), and luminal A (4/32, 12.5%)
(p < 0.001). Intrinsic subtypes showed significantly different prog-
noses by Kaplan‒Meier survival analysis (Fig. 3B). The basal subtype
had the worst survival outcome, whereas the normal-like and
luminal A subtypes had better outcomes than the other subtypes,
consistent with a previous study42 ([5-year DFS of basal, HER2-E,
luminal B, luminal A, and normal-like: 50.0%, 80.2%, 84.5%, 92.8%,
and 100%, respectively, P= 0.007] and [5-year OS of basal, HER2-E,
luminal B, luminal A, and normal-like: 68.8%, 95.0%, 82.9%, 96.0%,
and 100%, P= 0.03]). The intrinsic subtype influenced survival
outcome in only TNAC (Fig. 3C, D).

TNBC subtype
TNBC subtyping was applied to our TNAC and LK-TNBC cohort and
TCGA-TNBC cohort according to Lehmann’s classification24. In our
TNAC cohort, a luminal androgen receptor (LAR) subtype, which is
closely related to breast cancer of the apocrine type24, was the
most common (29/73, 39.7%), followed by the mesenchymal
stem-like (MSL) subtype (11/73, 15.1%), except for unstable (UNS)
(Fig. 4A). Only three TNACs (4.1%) were categorized into basal-like
(BL) 1, and five (6.8%) were categorized into BL2. BL1 (10/32,
31.3%) and BL2 (10/32, 31.3%) subtypes were frequently observed
in LK-TNBC. In LK-TNBC, only two (6.3%) samples were classified as
the LAR subtype (p < 0.001). TNBC subtype also influenced BC
survival outcome (Fig. 4B). The UNS TNBC subtype group did not
have any recurrence, and the LAR subtype had a 96.8% 5-year DFS
rate. The 5-year DFS rate was 90.9% in MSL, 81.5% in

immunomodulatory (IM), 58.3% in BL1, 50.5% in BL2, and 50%
in mesenchymal (M) subtype samples (P= 0.005). In terms of OS,
the UNS group did not experience any death, while the survival
rate was 58.3% in BL1, 76.6% in BL2, 100% in IM, 92.2% in LAR,
100% in M, and 90.9% in MSL group (P= 0.049).
Burstein26 and Fudan University Shanghai Cancer Center

(FUSCC)27 TNBC subtypes were also evaluated (Supplementary
Figs. 2 and 3). The expression levels of a total of 55 genes
representing each Burstein subtype were used to predict subtypes
of TNAC and LK-TNBC. The cluster with high expression levels of
genes related to the Burstein LAR subtype included most TNACs
previously assigned to the intrinsic luminal A and Lehmann LAR
subtypes. In FUSCC TNBC subtyping, many TNACs (34/73, 46.6%)
and TCGA TNBCs with the FUSCC LAR subtype were sorted into
the same cluster, whereas only four LK-TNBCs (4/32, 12.5%) were
included in the FUSCC LAR subtype.

Differentially expressed genes in TNAC
Differential gene expression (DGE) analysis between TNAC and LK-
TNBC showed that TNAC had 2082 upregulated genes and 162
downregulated genes compared with LK-TNBC (Supplementary
Fig. 4, Supplementary Table 3). The level of expression of CTNNB1,
which was enriched in basal-like breast cancer and associated with
a poor prognosis43, significantly decreased in TNAC. However,
apocrine carcinoma-associated genes such as ACSM1, FABP7, and
HMGCS244 showed significant upregulation in TNAC compared to
LK-TNBC (Wilcoxon signed-rank test, p < 0.05) (Supplementary Fig.
5, Supplementary Table 4). GSEA revealed that metabolic
processes of hormones and acids were enriched in TNAC, while
epigenetic regulation of gene expression and chromatin
organization-related pathways were significantly enriched in LK-
TNBC (Supplementary Table 5).
DGE analysis and GSEA of the intrinsic subtypes of TNAC

showed that epithelial mesenchymal transition (EMT) and TNF-
alpha signaling pathways were upregulated, but E2F targets and
mTORC1 signaling pathways were downregulated in luminal A
TNAC samples (Supplementary Fig. 6a, Supplementary Table 6).
These results were consistent with previous studies reporting that
EMT was involved in the pathogenesis of apocrine carcinoma45

and that the E2F target gene set was more enriched in the basal
subtype than in the luminal or normal-like subtype46. Enriched
KEGG pathways and GO biological processes are described in
Supplementary Fig. 6b, c and Supplementary Table 6.

Tumor microenvironment of TNAC
Different tumor microenvironments (TMEs) in TNAC and LK-TNBC
were identified by the CIBERSORTx algorithm33. Macrophages,
CD4+ T cells, cancer HER2_sc, and mature luminal cell types were
significantly enriched in TNAC compared to LK-TNBC (Wilcoxon
signed-rank test, p < 0.05, Supplementary Fig. 7). In contrast,
cancer cycling and cancer myeloid cell types were more
prominent in LK-TNBC than in TNAC (Wilcoxon signed-rank test,
p < 0.05).

Gene fusion
FGFR2-TACC2 fusion, which was discovered as a novel rearrange-
ment in TNAC39, was found in one TNAC patient in our cohort. The

Fig. 1 Somatic Point Mutations in TNAC and LK-TNBC. A The top 16 significantly mutated genes as determined by the dNdScv algorithm
(p < 0.001, TNAC: 13 genes, LK-TNBC: 5 genes) in TNAC and LK-TNBC were sorted by their mutation frequency. The right bar plot shows the
mutation frequencies of the 16 genes in our cohorts and TCGA cohorts. The red dotted vertical line represents a 5% mutation frequency. The
top bar plot indicates tumor mutational burden (TMB), which represents the number of mutations per megabase (Mb) for each sample. The
samples with TMB values greater than 10 were considered hypermutated (black dotted horizontal line). The clinical and pathological
characteristics were also annotated. The significant differences between TNAC and LK-TNBC according to baseline characteristics were
calculated by Fisher’s exact test. B Schematic representation of somatic point mutations in TP53, PIK3CA, and PIK3R1 in our TNAC and LK-TNBC
cohorts.
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list of gene fusion events identified from our TNAC and LK-TNBC
cohorts is described in Supplementary Table 7.
The frequency of gene fusion events varies significantly

depending on tumor type and intrinsic subtype (Supplementary
Fig. 8). TNAC showed fewer gene fusion events than LK-TNBC
(Wilcoxon signed-rank test, p < 0.05). Interestingly, the luminal A
subtype had the lowest frequency of gene fusions, and the
frequency was significantly increased in the order of luminal B,
HER2-E, and basal subtype (Kruskal‒Wallis, p < 0.05).

Survival analysis
DFS and BC-specific OS were analyzed in both TNAC and LK-TNBC.
The median follow-up duration was 71.3 months (interquartile
range: 41.2, 90.0). In terms of both DFS and OS, TNAC had superior
survival outcomes compared with LK-TNBC. Thus, the five-year
DFS rate was 92.2% vs. 59.1% in TNAC vs. LK-TNBC (P= 0.001), and
the five-year OS rate was 95.3% vs. 74.6% (P= 0.0099) (Fig. 5A).
Among other clinical characteristics, stage and Ki-67 were
associated with BC prognosis (Supplementary Fig. 9a, b). Addi-
tional survival analyses were performed on TNAC and LK-TNBC of
the same stage. In stage II, TNAC had better DFS than LK-TNBC
(Supplementary Fig. 9c).
We performed multivariate analysis of tumor type (TNAC vs. LK-

TNBC), stage, Ki-67, and intrinsic subtype. In this analysis, TNAC
had better DFS than LK-TNBC. The hazard ratio [HR] of TNAC
compared to LK-TNBC was 0.360 with a 95% confidence interval
[CI]: 0.148, 0.878 (P= 0.02). Stage also significantly affected DFS
with an HR of 6.070 for stage II vs. stage I (95% CI: 0.771, 47.801,
P= 0.08) and an HR of 28.266 for stage III (95% CI: 3.483, 228.719,
P= 0.002) (Fig. 5B).

DISCUSSION
In this study, we revealed that TNAC had different genomic
characteristics compared to TNBC with low Ki-67. TP53 and

PIK3CA mutations were less frequently observed in TNAC than in
LK-TNBC, and other mutations were found at different
frequencies between TNAC and LK-TNBC. PIK3R1 mutation was
observed only in TNAC. The APOBEC signature was more
dominant in LK-TNBC, whereas high TMB was more frequently
observed in TNAC and was associated with mutation of MMR-
associated genes. Considering intrinsic subtypes, the luminal A
subtype was more frequent in TNAC, while the basal subtype
was more common in LK-TNBC. DFS and OS were different for
TNAC and LK-TNBC. In addition, TNBC subtypes differed
between TNAC and LK-TNBC.
In TNBC, TP53 was the most commonly detected mutation. In

the TCGA dataset, ~80% of TNBCs harbored TP53 mutations, while
only 9% harbored PIK3CA mutations5. Another study suggested
that TP53 mutation was found in 80% of ER-negative BCs, with
PIK3CA mutation found at a frequency of 20%47. In our study, TP53
mutation was observed in 28.5% of TNACs and 70.4% of LK-TNBCs.
PIK3CA mutation was observed in 44.4% of LK-TNBCs, similar to
the rate in luminal A type samples in the TCGA cohort5. PIK3R1
mutation was found in ~1–3% of BCs regardless of HR and HER2
status5. Our study suggested that ~10% of PIK3R1 mutations were
exclusively observed in TNAC.
Ki-67 is one of the most important prognostic biomarkers in

TNBC. A previous study suggested that high Ki-67 indicated a poor
prognosis compared to low Ki-67 in TNBC48. Recent studies
reported that TNAC had a lower Ki-67 score and better prognosis
than TNBC3,49. However, the researchers did not perform multi-
variate analysis or evaluation of factors affecting prognosis
between TNAC or Ki-67 score. Therefore, we analyzed the genetic
characteristics and prognosis of TNAC and TNBC while considering
Ki-67 expression. We chose LK-TNBC because TNAC generally has
a low Ki-67 score. TNBC with low Ki-67 was not frequently
observed, and only 25% of TNBCs had a Ki-67 value less than
30%48. In our study, 72% and 92% of TNBC and TNAC patients had
Ki-67 less than 30%.
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The proportions of mutational signatures also differed between
TNAC and LK-TNBC. MMR-associated signatures were dominant in
TNAC, whereas APOBEC signatures were more prevalent in TNBC.
Hypermutation was also frequently observed in TNAC with genetic
alteration of MMR-associated genes. In previous study, the MMR
signature is rarely detected in BC, but the APOBEC signature is
common50. The MMR signature of TNAC showed unique genetic

characteristics, suggesting this as a surrogate biomarker for the
response to ICIs51.
Immune checkpoint inhibitor (ICI) treatment combined with

chemotherapy has been approved as a standard treatment
strategy for TNBC, and an understanding of the TME is important
to treat TNBC patients52–54. Currently, programmed death-ligand
1 status and tumor-infiltrating lymphocyte (TIL) levels are
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Fig. 3 Intrinsic subtyping of TNAC and LK-TNBC. A Hierarchical clustering of expression profiles of our cohort and the TCGA BRCA cohort.
Rows in the heatmap correspond to PAM50 genes, and columns correspond to individual patients. Gene expression was normalized to Z
score; red indicates upregulation, and blue indicates downregulation. The right bar plot shows the proportions of intrinsic subtypes of TNAC
and LK-TNBC as determined by PAM50 prediction using ‘genefu’ in the R package (v2.26.0). Differences in disease-free survival (DFS) and
overall survival (OS) according to intrinsic subtype of total samples (B), TNAC samples (C), and LK-TNBC samples (D). P values were calculated
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predictive biomarkers for ICI treatment response in TNBC.
However, additional predictive biomarkers for ICI are needed54,55.
In our TME analysis, the CD4+ T-cell subset and macrophages
were enriched in TNAC compared to TNBC. This suggests the
potential applicability of ICI treatment for TNAC, as CD4+ T-cell
infiltration is associated with the antitumor immune response and
the ICI response56.
The intrinsic subtype is a traditional biomarker of BC6 and has

been used as a surrogate biomarker for adjuvant chemotherapy
and BC-specific survival57,58. Generally, TNBC is categorized into
the basal-like subtype, and hormone receptor+HER2- BC is the
luminal A subtype57. In survival, the basal-like subtype had worse

DFS and OS than the luminal A and B subtypes regardless of TNBC
according to immunohistochemistry (IHC) results57. In our study,
TNAC was categorized into luminal A (38.4%), luminal B (26.0%),
HER2-E (26.0%), normal-like (5.5%), and basal (2.7%) despite being
classified as TNBC by IHC. In contrast, LK-TNBCs were mostly
categorized into the basal subtype (43.8%). In terms of Lehmann’s
TNBC subtypes, LAR was the most common in TNAC. TNBC was
most frequently categorized into BL1 and BL2 subtypes, whereas
only 10% of TNACs were classified as BL1 and BL2. These
characteristics were associated with DFS and OS. Moreover,
multivariate analysis suggested that BC stage and TNAC were
associated with DFS. Although intrinsic subtype and TNAC status
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were strongly related, TNAC remained an important prognostic
factor for DFS after statistical adjustment.
Treatment guideline indicates chemotherapy for early TNBC as

systemic induction therapy or postoperative chemotherapy59.
They recommended no systemic therapy for apocrine tumors
because of low-risk endocrine nonresponsive histology. However,
apocrine carcinomas are generally categorized into TNBC or
HER2+ BC according to IHC, and they need to be treated with
chemotherapy and/or anti-HER2 treatment3. In our study, TNAC,
which was categorized into normal-like and luminal A subtypes,
had very good DFS and OS compared to that of other intrinsic
subtypes. Therefore, we suggest that early-stage TNAC does not
need adjuvant chemotherapy if it is the normal-like or luminal A
intrinsic type. This would prevent unnecessary chemotherapy,
which induces several toxicities, including alopecia, nausea/
vomiting, cytopenia and severe infections60.
This study has limitations. First, this study was not a prospective

clinical trial with intervention; therefore, we could not evaluate
specific drug responses according to TNAC and LK-TNBC. In
addition, we generated sequencing data using FFPE and FF tissue
samples because of the limited availability of TNAC and LK-TNBC
samples. To overcome the batch effect between FFPE and FF
tissues, we analyzed sequencing data after batch correction.
This is the first attempt to comprehensively assess the genomic

characteristics of TNAC. Moreover, this study evaluates the genetic
signatures of TNAC and could inform treatment decisions

regarding adjuvant chemotherapy in early TNBC. Further pro-
spective clinical trials and parallel translational research are
warranted.
In conclusion, TNAC has different genomic characteristics,

including intrinsic subtypes, that influence survival outcome. This
genetic information may help to inform decisions relating to
adjuvant chemotherapy and to predict survival outcome.
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