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Generation of a lethal mouse model expressing human ACE2
and TMPRSS2 for SARS-CoV-2 infection and pathogenesis
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Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis
and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and
pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2
infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant
body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection,
indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively
reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and
differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that
double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis
and evaluate antiviral therapeutics against coronavirus disease 2019.

Experimental & Molecular Medicine (2024) 56:1221–1229; https://doi.org/10.1038/s12276-024-01197-z

INTRODUCTION
Since the coronavirus disease 2019 (COVID-19) outbreak, the
development of therapeutic agents and vaccines is still needed
to alleviate the current pandemic. Several animal models of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection have been used to study viral pathogenesis and
transmission, including nonhuman primates, ferrets, and Syrian
hamsters1,2. However, these models do not reflect the severity
or mortality of COVID-19. The K18-hACE2 transgenic mouse, in
which human angiotensin-converting enzyme 2 (hACE2) is
expressed, is most commonly used for SARS-CoV-2 infection
because murine ACE2 does not effectively bind to the viral
spike protein3. This transgenic mouse provides a model of
clinical disease and lethal infection, allowing the effective
evaluation of therapies and vaccines4–6. These studies suggest
that a mouse model that is highly susceptible to viral infection
is helpful for the development of therapeutic agents and
vaccines.
The SARS-CoV-2 spike protein consists of S1 and S2 proteins,

which function in receptor recognition and mediate membrane
fusion4,5. Cleavage of S1/S2 by proteases promotes binding of the
spike protein to ACE2 and causes cleavage of the S2′ site6. As
transmembrane serine protease 2 (TMPRSS2), a type II transmem-
brane serine protease, supports viral entry via proteolytic

activation of the SARS-CoV-2 spike protein7–9, the TMPRSS2-
expressing Vero E6 cell line was reported to be highly susceptible
to SARS-CoV-2 infection10. TMPRSS2 is also involved in viral
replication, pathogenesis, and host immune responses11.
In this study, we established a SARS-CoV-2 infection mouse

model expressing both hACE2 and hTMPRSS2, which was
expected to be highly susceptible to viral infection. The double
transgenes, hACE2 and hTMPRSS2, were simultaneously micro-
injected to generate double-transgenic (double-Tg) mice. We then
evaluated the susceptibility, viral replication, pathological symp-
toms, and cytokine and chemokine levels in mouse lungs
following SARS-CoV-2 and variant infection. In addition, we
determined whether double-Tg mice could be used to develop
potential therapeutic agents.

MATERIALS AND METHODS
Biosafety
All procedures were performed at a biosafety level 3 (BSL-3) or an animal
BSL-3 facility for SARS-CoV-2-related experiments by personnel equipped
with powered air-purifying respirators. This study was approved by the
Institutional Animal Care and Use Committee of the Korea Research
Institute of Chemical Technology (protocol IDs: 8A-M6, IACUC ID 2021-8A-
02-01, and 2021-8A-03-03).
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Cells
A549 cells (CCL-185) were purchased from the American Type Culture
Collection (ATCC; Manassas, VA, USA). The cell line was maintained at 37 °C
in Dulbecco’s Modified Eagle medium (Cytiva, Marlborough, MA, USA)
containing 10% fetal bovine serum (Gibco, Waltham, MA, USA) and 1%
penicillin/streptomycin (Gibco).

Mice
C57BL/6 mice were purchased from Orient Bio, Inc. (Gyeonggi-do, Republic
of Korea). A group of 8–12-week-old male and female double-Tg mice were
intranasally administered SARS-CoV-2 inocula (2 × 103 plaque-forming
units [PFU]) under anesthesia using isoflurane in a BSL-3 animal facility.
The mock group was injected with the same volume of phosphate-
buffered saline (PBS) in all experiments. Mice were monitored and weighed
daily. Clinical disease symptoms were scored from 0–4 as follows: 0, no
symptoms; 1, ruffled fur; 2, reduced mobility; 3, hunched posture; and 4,
moribund or death. In this study, 30% weight loss was considered the
humane euthanasia criterion via CO2 asphyxiation, except during the first
mouse lethal dose 50 (MLD50) assessment. Organ tissues were collected at
the indicated days post infection (dpi) after the animals were anesthetized
with isoflurane, followed by transcardial perfusion with cold PBS. The
tissues were weighed and homogenized in preloaded steel bead tubes
containing cold PBS using a tacoPrep Bead Beater (GeneReach Biotechnol-
ogy Corp., Taichung City, Taiwan).

Lentivirus-based pseudovirus production
A plasmid kit (NR-52948) producing a lentivirus-based pseudovirus (PV)
with the SARS-CoV-2 spike protein (GenBank: NC_045512) and luciferase
gene was obtained from BEI Resources (NIAID, NIH). PV-containing

supernatants were collected from plasmid-transfected HEK293T cells and
titrated as previously reported7,8.

Viruses
SARS-CoV-2 (GISAID: EPI_ISL_407193) and its variants (Beta, NCCP 43382;
Omicron, NCCP 43408) were obtained from the Korea Centers for Disease
Control and Prevention (KCDC) and propagated in Vero cells (CCL-81;
ATCC). Culture supernatants containing the viruses were stored at −80 °C.
Viral titers were measured using a plaque assay as described previously9.

TMPRSS2 inhibitor treatment
The 8–12-week-old female double-Tg mice were intranasally administered
3mg/kg nafamostat mesylate (N0289; Sigma-Aldrich, St. Louis, MO, USA)
2 h before SARS-CoV-2 infection (2 × 103 PFU) under anesthesia using
isoflurane in a BSL-3 animal facility. The vehicle group was injected with an
equal volume of 0.9% normal saline (Daihan Pharm. Co., Ltd., Gyeonggi-do,
Korea).

In vitro and in vivo transfection
Cells (2 × 105 cells per well) were plated into 6-well plates and transfected
with 2 μg pCMV3-hACE2-FLAG (NM_021804.1, HG10108-CF; Sino Biologi-
cal, Beijing, China) and/or 0.3 μg pCMV3-hTMPRSS2-HA (NM_005656.3,
HG13070-CY; Sino Biological) using a TransIT-LT1 Transfection Reagent
(Mirus Bio, Madison, WI, USA) according to the manufacturer’s
recommendations.
For in vivo transfection, 6-week-old male and female C57BL/6 mice were

intranasally transfected with 40 μg pCMV3 vector or pCMV3-hACE2-FLAG,
or co-transfected with 30 μg pCMV3-hACE2-FLAG and 10 μg pCMV3-
hTMPRSS2-HA using the in vivo-jetPEI reagent (Polyplus, Illkirch, France) in
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two doses 1 h apart (each 50 μl) per the manufacturer’s instructions (N/P
ratio= 8). Mice were infected with 5 × 105 PFU SARS-CoV-2 for subsequent
experiments.

Plaque assay
The mouse lung homogenates were serially diluted in Eagle’s minimum
essential medium supplemented with 2% fetal bovine serum for the
plaque assay. The dilutions were transferred onto Vero E6 cell monolayers
in a 24-well plate (~1 × 105 cells/well). After incubation at 37 °C for 1 h, the
infected cells were washed with PBS and overlaid with 1.8% carboxymethyl
cellulose in the minimal essential medium. The samples were incubated for
4 days, followed by fixation and staining with 0.05% crystal violet
containing 1% formaldehyde. The plaques were counted and measured
using ImmunoSpot version 5.0 software and an analyzer (Cellular
Technology Ltd., Shaker Heights, OH, USA).

RNA extraction and RT-qPCR
Total cellular RNA was extracted using the RNeasy Mini Kit (QIAGEN,
Hilden, Germany). RNA was extracted from tissue homogenates using the
Maxwell RSC simplyRNA tissue kit (Promega, Madison, WI, USA) following
the manufacturer’s protocol. Quantitative RT-PCR (QuantStudio 3; Applied
Biosystems, Foster City, CA, USA) was performed using a one-step Prime
Script III RT-qPCR mix (Takara, Kyoto, Japan). Viral RNA of the nucleocapsid
protein (NP) was detected using a 2019-nCoV RUO kit (10006713;
Integrated DNA Technologies, Coralville, IA, USA). The primers and probe
specific for hACE2 were as follows: forward primer, 5′-GCCACTGCTCAAC-
TACTTTG-3′; reverse primer, 5′-GCTTATCCTCACTTTGATGCTTTG-3′; and
probe, 5′-ACTCCAGTCGGTACTCCATCCCA-3′. Those for hTMPRSS2 were as
follows: forward primer, 5′-TGTACTCATCTCAGAGGAAGTCC-3′; reverse
primer, 5′-CTGGTGGATCCGCTGTC-3′; and probe, 5′-ACCCTGTGTGCCAA-
GACGACT-3′. Absolute quantification of hACE2 and hTMPRSS2 mRNA
copies was performed by constructing each standard curve using serial
dilutions of pCMV3-hACE2-FLAG and pCMV3-hTMPRSS2-HA.

Western blotting
Proteins in the lysate were separated on a denaturing polyacrylamide gel
and transferred onto a polyvinylidene fluoride (PVDF) membrane (Merck
Millipore, Burlington, MA, USA). The membrane was incubated with 5%
skim milk (BD Biosciences, Franklin Lakes, NJ, USA) in Tris-buffered saline
with 0.1% Tween 20 (TBST) buffer and the primary antibodies; namely, anti-
hACE2 (Abcam, Cambridge, UK), anti-FLAG M2 (Sigma-Aldrich), anti-HA-Tag
(6E2; Cell Signaling Technology), and anti-GAPDH (14C10; Cell Signaling
Technology). Horseradish peroxidase (HRP)-conjugated secondary anti-
bodies (Bio-Rad, Hercules, CA, USA) and enhanced chemiluminescence
(ECL) reagents (Thermo Fisher Scientific, Waltham, MA, USA) were used for
protein detection.

Multiplex immune analysis
The lungs of SARS-CoV-2-infected mice were dissected at 0, 3, and 6 dpi
and then homogenized in bead tubes, followed by incubation in Triton
X-100 (1% final concentration) for 16 h at 4 °C to inactivate the virus.
Aliquots were analyzed using the MILLIPLEX human cytokine/chemokine
magnetic bead panel (HCYTOMAG-60K; Merck Millipore) with Luminex 200

multiplexing instruments (40-012; Merck Millipore) to assess cytokine/
chemokine expression.

Histology and immunohistochemistry
Mice were anesthetized and transcardially perfused with cold PBS. The lungs
were harvested and inflated with 10% neutral-buffered formalin for 16 h at
24 °C. Samples were processed routinely and embedded in paraffin wax
(Leica, Wetzlar, Germany). The tissues were cut into 5-μm sections and
stained with hematoxylin and eosin (BBC Biochemical, Mount Vernon, WA,
USA) using an autostainer (Leica). Serial sections were immunostained with
anti-SARS-CoV-2 NP rabbit monoclonal antibody (40143-R001; Sino Biologi-
cal). Images were captured using an Olympus BX51 microscope (Olympus,
Tokyo, Japan) and Nuance 3.02 software (PerkinElmer, Waltham, MA, USA).

Statistical analysis
All experiments were performed at least three times. All data were
analyzed using the GraphPad Prism 8.0 software (GraphPad Software, San
Diego, CA, USA). Statistical significance was set at p < 0.05. The specific
analytical methods used are described in the figure legends.

RESULTS
Both in vitro and in vivo transfection of hACE2 and hTMPRSS2
increased viral infection
Given that hACE2 and hTMPRSS2 are involved in the entry step of
SARS-CoV-2 infection, we examined whether their co-expression
could augment viral infection via in vitro and in vivo transfection
(Fig. 1a). First, we transiently co-transfected hACE2 and hTMPRSS2
into human alveolar A549 cells that express negligible levels of
these genes. After 24 h, the expression levels of hACE2 and
hTMPRSS2 were determined using western blotting (Fig. 1b). To
verify their role in viral entry, we used lentivirus-based PVs
expressing luciferase and pseudotyped them with the S protein of
SARS-CoV-2 as previously described7,8. The results revealed that
the PV entry was most efficient in hACE2 and hTMPRSS2 co-
transfected cells (Fig. 1c). Next, the transfected cells were infected
with SARS-CoV-2 at a multiplicity of infection of 1. Viral RNA levels
in cell lysates and culture media showed the strongest increase
after hACE2 and hTMPRSS2 co-expression, as shown via RT-qPCR
analysis (Fig. 1d). Second, we transfected both genes in vivo into
C57BL/6 mice via the intranasal route. The expression of hACE2
and hTMPRSS2 mRNA in the lungs decreased over time but
remained at low levels until 12 dpi, as shown in Fig. 1e, f. When
the transfected mice were intranasally infected with 1 × 104 PFU
SARS-CoV-2, the co-expressing mice were more susceptible to viral
infection at 2 dpi than the single-expressing mice (Fig. 1g).
However, viral RNA levels rapidly decreased with time as the
expression of hACE2 and hTMPRSS2 declined due to transient
transfection. These results suggest the need to generate double-
Tg mice to further evaluate their susceptibility to SARS-CoV-2
infection.
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SARS-CoV-2 infection in hACE2 and hTMPRSS2 double-
transgenic mice
To generate double-Tg mice bearing both hACE2 and hTMPRSS2
under the control of the CMV promoter, these transgenes were
simultaneously microinjected into the male pronucleus of
fertilized eggs from C57BL/6 mice, followed by transgenic zygote
transfer and delivery (Fig. 2a). The expression levels of hACE2 and
hTMPRSS2 were detected with similar expression patterns in
several tissues, including the lungs, brain, heart, liver, kidney, and
colon (Fig. 2b, c). Wild-type C57BL/6 (non-Tg) mice served as
negative controls. Next, double-Tg mice were intranasally infected
with different viral doses of SARS-CoV-2 to determine the MLD50.
Body weights, survival rates, and clinical symptoms were
monitored and shown to increase in a dose-dependent manner
(Fig. 3a–c). All mice infected with over 1 × 103 PFU inocula began
to lose weight, became lethargic by 5 dpi, and eventually
succumbed to the disease by 9–12 dpi, whereas all mice infected
with 1 × 10 PFU survived. Mice infected with 1 × 102 PFU showed
variable mortality (3 out of 4 females and 1 out of 3 male mice
survived). The MLD50 to SARS-CoV-2 in double-Tg mice was
calculated to be 2 × 102 PFU using the Reed and Muench
method12,13. This MLD50 measurement was comparable with that
of other transgenic mice, suggesting that double-Tg mice are

highly susceptible to SARS-CoV-214–16. Thus, all mice were infected
with 10 MLD50 (2 × 103 PFU) in subsequent experiments. Infectious
virus particles in the lungs were assessed at 6 dpi using a plaque
assay (Fig. 3d). The tissue distribution of viral RNA in the lungs,
nasal turbinate, brain, heart, liver, kidney, spleen, intestine, and
colon at 3 and 6 dpi was determined using RT-qPCR. Viral titers in
the lungs increased with time, whereas those in the nasal
turbinate declined (Fig. 3e, f). The predominant tissue distributions
were in the brain and lungs as target organs (Supplementary Fig.
1). We also detected the nucleocapsid protein in lung sections
derived from SARS-CoV-2-infected double-Tg mice using immu-
nohistochemistry (Fig. 3g). These results demonstrate that the
double-Tg mice are highly susceptible to SARS-CoV-2 infection
and that the lungs and brain are the main targets of viral infection.

Inflammatory and pathological changes in the lungs of SARS-
CoV-2-infected double-transgenic mice
To evaluate the inflammatory responses to SARS-CoV-2 infection
in the double-Tg mice, we examined the protein levels of various
inflammatory cytokines and chemokines in the lungs at 0 (mock),
3, and 6 dpi using multiplex immune analysis (Fig. 4a).
Inflammatory cytokine and chemokine levels were elevated
mostly at 6 dpi, including those of granulocyte colony-
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100 μm) and high magnification (right; bars, 100 μm).
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stimulating factor (G-CSF), interferon gamma-inducible protein-10
(IP-10), MKC, monocyte chemoattractant protein-1 (MCP-1),
macrophage inflammatory protein-1 (MIP-1), and interleukin-6
(IL-6), as shown in the heatmap (Fig. 4b). We also conducted
histological assays to examine whether these mice had pulmonary
injuries caused by SARS-CoV-2 infection. Non- and double-Tg mice
were infected intranasally under the same conditions. Histopatho-
logical changes, such as alveolar wall thickening and infiltration of
inflammatory cells in the lungs of double-Tg mice, were observed
at 3 and 6 dpi compared with those of the non-Tg mice (Fig. 5).
These findings indicated that SARS-CoV-2 infection in double-Tg
mice could induce inflammatory responses in the lungs and cause
acute lung injury with inflammatory cell infiltration.

Nafamostat inhibits SARS-CoV-2 infection in double-
transgenic mice
To evaluate the potential of double-Tg mice to screen and develop
therapeutic agents against COVID-19, we tested the TMPRSS2
inhibitor, nafamostat, whose inhibitory activity against SARS-CoV-2
infection is lost in the absence of TMPRSS217. Mice were
intranasally administered 3mg/kg nafamostat 2 h before viral
infection; their body weights, survival rates, and clinical symptoms
were monitored at 14 dpi, as illustrated in Fig. 6a. Nafamostat-
pretreated mice lost less weight and almost recovered it by 10 dpi
compared with that of vehicle-pretreated mice (Fig. 6b). Most mice
survived and showed attenuated disease scores (Fig. 6c, d). These
data indicated that nafamostat pretreatment effectively reduced
morbidity and mortality in SARS-CoV-2-infected double-Tg mice.
Owing to pretreatment, we assessed the viral load in the lungs
early during infection. The infectious virus titer and viral RNA levels
in the lungs and nasal turbinate were significantly reduced after
nafamostat administration (Fig. 6e–g). Histopathological analysis of
the lungs of infected mice at 6 dpi also revealed that nafamostat
relieved the severity of lung disease caused by SARS-CoV-2
infection (Fig. 6h). These results imply that double-Tg mice could
be used to develop potential therapeutic agents against COVID-19.

Comparison of SARS-CoV-2 variant infection in the double-
transgenic mice
Since its emergence in late December 2019, SARS-CoV-2 has
rapidly evolved and continuously mutated, resulting in the
emergence of variants with varying degrees of infectivity and
lethality18,19. Therefore, we investigated whether double-Tg mice
could demonstrate viral replication, infectivity, and pathogenicity
of SARS-CoV-2 variants. To address this, we used Beta (B.1.351)
and Omicron (B.1.1.529) variants, which are known to show
differences in pathogenicity20. Infection with the Beta variant was
expected to have a similar pathogenic pattern to that of the
Wuhan strain, but not the Omicron variant. Double-Tg mice
infected with the Beta variant showed weight loss and disease
severity similar to those infected with the Wuhan strain, whereas
infection with the Omicron variant did not cause morbidity and
mortality (Fig. 7a–c). In agreement with other results that the
Omicron variant barely replicated in lung cells14, we were not able
to detect infectious viral particles in the lungs of the Omicron-
infected mice at 6 dpi (Fig. 7d–f). These data suggested that
differential pathogenesis of SARS-CoV-2 variants was demon-
strated in the double-Tg mice.

DISCUSSION
Mice are the most commonly used experimental animals in
laboratory research owing to their low cost, ease of handling, and
high accessibility2. However, conventional wild-type mice are not
susceptible to SARS-CoV-2 infection because murine ACE2 does
not effectively bind to the viral spike protein3. Several transgenic
mice expressing hACE2 have been developed as SARS-CoV-2
animal models3,21, followed by numerous analytical reports of
immunological profiles and pathological phenotypes22,23. These
animal models suggest that high susceptibility to SARS-CoV-2
infection is important for the evaluation of vaccines and
therapeutic agents against COVID-19. Given that TMPRSS2 is
involved in viral entry and supports viral infectivity (Fig. 1)10,15, we
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generated double-Tg mice expressing both hACE2 and hTMPRSS2
to increase their susceptibility to SARS-CoV-2 infection (Fig. 2). The
double-Tg mice showed significant body weight loss, clinical
disease symptoms, induced immune responses, and lethality in
response to viral infection, indicating that they are highly
susceptible to SARS-CoV-2 and could be used to develop
therapeutic agents against COVID-19 (Figs. 3–5). Moreover, the
antiviral effect of the TMPRSS2 inhibitor, nafamostat (Fig. 6), and
vulnerability to SARS-CoV-2 variant infections were demonstrated
in this model.
SARS-CoV-2 has a polybasic furin cleavage site at the S1/S2

junction of its spike protein that contributes to viral entry,
infectivity, and pathogenesis. As TMPRSS2 mediates S2′ cleavage,
the furin cleavage site is involved in TMPRSS2-dependent viral
entry and cell tropism9,24–26. Absence of the furin cleavage site
results in reduced viral replication and pathogenesis in animal
models16. These studies indicated the need for hTMPRSS2
expression in a mouse model to evaluate therapeutic agents
targeting viral infectivity and pathogenesis specifically. Another
study showed that TMPRSS2 is essential for murine airways and
plays a role in fusogenicity14,27. Omicron variants use TMPRSS2
inefficiently during their entry process compared with that of
other variants28. Our study showed the attenuated pathogenesis
of the Omicron variant among the other variants (Fig. 7),
suggesting that double-Tg mice could be a suitable animal model
for understanding viral infectivity and pathogenesis of SARS-CoV-
2, especially for Omicron infections, as well as for estimating
antiviral activity against COVID-19.
In summary, we confirmed that TMPRSS2 increases viral

infectivity during both in vitro and in vivo transfection. We
generated double-Tg mice expressing both hACE2 and hTMPRSS2
that were highly susceptible to viral infection. Our results
demonstrated the pathogenicity and lethality of SARS-CoV-2 in
double-Tg mice with clinical symptoms, including acute lung
injury with inflammatory cell infiltration and death, recapitulating
symptoms and pathology in patients with COVID-19. These
findings render double-Tg mice as a useful model for under-
standing viral infectivity and pathogenesis and assessing potential
interventions.
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