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Integrative single-cell and bulk transcriptomes analyses reveals
heterogeneity of serine-glycine-one-carbon metabolism with
distinct prognoses and therapeutic vulnerabilities in HNSCC
Lixuan Wang1,2,3, Rongchun Yang1,2,3, Yue Kong1,2,3, Jing Zhou1,2,3, Yingyao Chen1,2,3, Rui Li4, Chuwen Chen1,2,3, Xinran Tang4,
Xiaobing Chen1,2,3, Juan Xia1,2,3, Xijuan Chen1,2,3, Bin Cheng1,2,3✉ and Xianyue Ren 1,2,3✉

Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor
microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck
squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological
roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified
using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine–glycine-one-carbon
(SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC
patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive
performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted
CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk
patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses
to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively
suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion
nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and
individualized precise metabolic-targeted treatment.
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INTRODUCTION
Cancers are characterized by uncontrolled cell proliferation and can
thrive in a changing microenvironment by rewiring metabolic
processes to provide nutrients and energy, activate oncogenic
signaling pathways, and manage redox homeostasis.1,2 The serine-
glycine-one-carbon (SGOC) metabolic network incorporates serine-
glycine biosynthesis, folate and methionine cycles, and purine
nucleotide biosynthesis in a positive feedback loop, which can
satisfy many of cancer cells’ requirements.3 Moreover, the products
and intermediates of SGOC metabolism can educate immune cells in
the tumor microenvironment (TME), such as cyclic dinucleotides,
which play critical roles in cancer immunotherapy. Increasing
evidence demonstrates that highly proliferative cancer cells exhibit
increased expressions of SGOC metabolic enzymes.3–5 SGOC
metabolism may represent a vulnerability in highly SGOC-activated
tumors, and SGOC metabolic enzymes may be potential therapeutic
target genes for cancer treatment in future scenarios.3 Therefore,
understanding the roles of SGOC metabolism in tumorigenesis and
their relationship with anti-cancer therapy is of great significance.
The increase in the ribonucleic acid (RNA) to deoxyribonucleic

acid (DNA) ratio in growing cells indicates an enhanced overall
biosynthetic capacity during malignant transformation, which

could result in the enlargement of nucleolar morphology, a
phenomenon known as nucleolar hypertrophy.6 De novo synth-
esis of purine nucleotides rapidly incorporates into RNA in
proliferating cells, which is the main reason for nucleolar
hypertrophy.7 Inosine 5’-monophosphate dehydrogenase (IMPDH)
catalyzes the oxidative conversion of inosine 5’-monophosphate
(IMP) into xanthosine 5’-monophosphate (XMP) and controls the
gateway to guanine nucleotides. It is the key enzyme of de novo
purine synthesis.8 Upregulation of IMPDH, which induces guanine
nucleotide accumulation, has been identified to be associated
with malignant transformation in several cancers, such as
glioblastoma and lung cancers. Thus, suppression of IMPDH-
regulated de novo purine biosynthesis represents a promising
therapeutic strategy. Currently, IMPDH inhibitors, including
mycophenolic acid (MPA, CellCept®), mizoribine (Bredinin®), and
ribavirin (Virazole® and Rebetol®), are widely used in the clinic as
antivirals.8 However, the application of IMPDH inhibitors in anti-
tumor therapy still need to be elucidated.
Head and neck squamous cell carcinoma (HNSCC) ranks as the

7th most common cancer type worldwide, characterized by high
heterogeneities and mortality rates.9,10 While multi-modal ther-
apeutic strategies have significantly improved over the past

Received: 25 October 2023 Revised: 3 April 2024 Accepted: 28 April 2024

1Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; 2Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; 3Guanghua School of
Stomatology, Sun Yat-Sen University, Guangzhou, China and 4Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
Correspondence: Bin Cheng (chengbin@mail.sysu.edu.cn) or Xianyue Ren (renxy7@mail.sysu.edu.cn)
These authors contributed equally: Lixuan Wang, Rongchun Yang

www.nature.com/ijosInternational Journal of Oral Science

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00310-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00310-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00310-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00310-2&domain=pdf
http://orcid.org/0000-0002-1845-0814
http://orcid.org/0000-0002-1845-0814
http://orcid.org/0000-0002-1845-0814
http://orcid.org/0000-0002-1845-0814
http://orcid.org/0000-0002-1845-0814
mailto:chengbin@mail.sysu.edu.cn
mailto:renxy7@mail.sysu.edu.cn
www.nature.com/ijos


decades, including chemotherapy and immunotherapy, fewer
than 60% of patients achieve the 5-year survival mark with
chemotherapy, and less than 20% of patients with advanced
disease respond to immune checkpoint blockade-based immu-
notherapies in HNSCC.11 This underscores the inadequacy of the
existing prognostic predictive system and standard therapy for
high-risk patients. Considering the central roles of metabolism in
tumorigenesis and development, systematically characterizing
intra- and inter-tumoral metabolic heterogeneity will aid in the
search for individualized, precise treatment strategies.
Previously studies have established that HNSCC is a metabolic

disorder disease primarily based on bulk transcriptomic profiles,12

which significantly obscure the heterogeneous cancer ecosystem
and compromise the accuracy and clinical utility of metabolic-
based biomarkers. Therefore, the aim of this study was to unveil
an intrinsic malignant classification for HNSCC based on metabolic
heterogeneity using scRNA-seq profiles, which enable precise
characterization of cellular heterogeneity and plasticity in the
complex cancer ecosystem. We explored the relationship between
differentially expressed metabolic pathways and patients’ clinical
outcomes from bulk RNA-seq data using scRNA-seq reference as
prior information. A novel, robust 4-gene signature based on
SGOC was developed to stratify HNSCC patients into high- and
low-risk groups. The differences in the TME and response to
therapies were analyzed. Furthermore, the anti-tumor efficacy of
novel metabolic-targeted drugs was evaluated in vitro and in vivo.
Overall, our work sheds novel light on metabolic heterogeneity
and metabolic-targeted clinical strategies for HNSCC patients.

RESULTS
SGOC upregulation represents a prominent metabolic feature
in HNSCC
Figure 1 illustrates the custom analysis pipeline utilized in the
current study. The scRNA-seq profiles of 20 HNSCC patients
(GSE181919) were analyzed, resulting in the clustering of a total of
47,711 cells into distinct cell types, including epithelial cells,
fibroblasts, endothelial cells, myocytes, immune NK/T cells, B/
plasma cells, macrophages, dendritic cells, and mast cells, based
on the molecular markers of each cell type (Fig. S1a, b).
Subsequently, the inferCNV method was employed to separate
malignant cells from non-malignant cells with normal karyotypes
(Fig. S1c).To elucidate the metabolic rewiring of HNSCC, non-
malignant and malignant epithelial cells were selected, and the
expression scores of 114 metabolic pathways, based on KEGG
database,13 were quantified using GSVA algorithm (Fig. 2a). In
comparison to non-malignant epithelial cells, 100 metabolic
pathways across ten major metabolic classes exhibited differential
expression (|GSVA t-value | > 2, adj.P < 0.05) in malignant cells,
with 64 pathways upregulated and 36 downregulated (Fig. 2b, Fig.
S2a, Table S1). Additionally, the expressions of all metabolic
pathways in bulk tissues were calculated based on TCGA-HNSC
dataset (Table S1). Remarkably, several metabolic alterations
identified in malignant cells via scRNA-seq profiles were not
observed in bulk tumor tissues. Furthermore, 38 of the 114 (33%)
critical metabolic pathways for cell proliferation were upregulated
in malignant cells as identified by scRNA-seq profiles, were
significantly downregulated in bulk RNA-seq, including citric acid
cycle, glycolysis, oxidative phosphorylation and fatty acid bio-
synthesis (Fig. 2b, Fig. S2b, c). This suggests that the metabolic
reprogramming events defined by previous bulk tissue studies
were largely obscured by the complex cellular components.
We initially observed substantial upregulation of the serine-

glycine, folate, purine, pyrimidine, and methionine metabolic
pathways within the SGOC metabolic network in malignant cells
(Fig. 2c, d). To further delineate the rewiring of SGOC metabolism,
we compiled gene lists associated with the SGOC metabolic
network from GO and KEGG sources and quantified their

expression scores (Table S2). Similarly, SGOC and its branched
metabolic pathways were all more highly expressed in malignant
cells compared to non-malignant keratinocytes, while the expres-
sions of SGOC network showed no significant alteration in some
bulk tumor tissue cohorts (Fig. 2e, f, Fig. S3a, b). Furthermore,
univariate COX regression analysis and Kaplan–Meier survival
analysis revealed that the SGOC network and its component
pathways were all prognostic candidate pathways (Fig. 2g). HNSCC
patients with higher SGOC scores exhibited shorter overall survival
time (OS) than those with lower scores (Fig. 2h, Fig. S4). Thus,
upregulation of SGOC may represent a prominent metabolic
disorder in HNSCC and is associated with poor clinical outcomes.

High SGOC metabolism contributes to aggressive phenotype
in HNSCC
To assess the transcriptional metabolic heterogeneity of HNSCC
cancer cells, the malignant cells were re-classified into five sub-
clusters based on their expression states (C0 - C4, Fig. 3a). The
cluster composition varied greatly among different patients,
demonstrating the transcriptional diversity of HNSCC (Fig. 3b, c).
Then, we calculated the SGOC score of each cluster using GSVA.
We found that each cluster exhibited a differential SGOC score,
highlighting the high metabolic heterogeneity within malignant
cells (Fig. 3d, e). Functional analysis based on GSEA hallmark
demonstrated that clusters with higher SGOC scores (C1, C2 and
C4) were associated with a higher cell cycle signature (Fig. 3e). The
scores of SGOC pathways are positively correlated with cell cycle
signature (Fig. 3f). Additionally, KEGG analysis indicated that
clusters with high SGOC scores were enriched in cancer hallmarks,
such as glycolysis and HIF-1 signaling (C1), nucleotide metabolism
(C2), and nucleocytoplasmic transport (C4) (Fig. 3g).
Next, we conducted deconvolution analyses to evaluate the

proportions of cell type in bulk RNA-seq data from TCGA-HNSCC,
GSE41613, GSE65858, and GSE42743, identifying three sub-
clusters in bulk tissues, which underscored the robustness of our
classification (Fig. 3h, Fig. S5a).To determine which sub-cluster was
associated with unfavorable clinical outcomes, univariate COX and
Kaplan–Meier survival analysis were performed. The results
supported that patients with high C0 (low SGOC scores) exhibited
longer OS, while those with high C2 (high SGOC scores) showed
shorter OS (Fig. 3i, j, Fig. S5b). Collectively, these findings
demonstrate that SGOC metabolism serves as an indicator of
high cellular aggressiveness in HNSCC.

A novel 4-gene SGOC signature exhibits favorable prognostic
prediction efficiency in HNSCC
To enhance the clinical applicability of the SGOC metabolic
network, we aimed to construct an SGOC-based signature for
prognostic and treatment response prediction. Sixty-eight differ-
entially expressed SGOC genes were identified through the
intersection of differentially expressed genes (DEGs) between
non-malignant and malignant cells (Fig. 4a). Among these, 16
candidate prognostic biomarkers associated with OS were figured
out through univariate COX analysis (Fig. 4b, c, Table S3).
Subsequently, we randomly divided 499 HNSCC patients from
TCGA into training (n= 250) and testing (n= 249) cohorts. LASSO
penalized cox regression analysis based on these candidates was
performed, and a 4-gene SGOC prognostic signature was
established in the training cohort (Fig. S6a−c). The Kaplan–Meier
survival curve was used to assess the predictive power of the
prognostic signature. Patients were stratified into high- and low-
risk groups based on the best cut-off value determined using the
ROC method. In the training, testing and total TCGA-HNSC cohorts,
patients in the high-risk group exhibited shorter OS and disease-
free survival (DFS) compared to those in the low-risk group
(Fig. 4d, e, Fig. S6d−g). External cohorts (GSE65858, n= 270;
GSE41613, n= 97; GSE42743, n= 74) validated that patients in the
high-risk group exhibited poorer clinical outcomes (Fig. 4f).
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Furthermore, we explored the relationships between the SGOC
risk score and OS in HNSCC patients who received chemotherapy,
revealing that patients in the high-risk group had longer OS after
chemotherapy treatment (Fig. 4g).
To determine whether the SGOC risk-score served as an

independent prognostic factor for OS, potential predictors
including gender, age, lymphovascular invasion, perineural inva-
sion, HPV status, alcohol consumption, TNM stage, and risk score
were analyzed via univariate cox regression in the TCGA-HNSC
cohort (Table S4). Individual risk factors with a cox p < 0.05
(lymphovascular invasion, perineural invasion, HPV status, and

SGOC risk-score) were further analyzed using multivariate cox
regression. The results indicated that the SGOC risk-score,
lymphovascular invasion, and perineural invasion were indepen-
dent risk factors for OS in HNSCC (Table S4).
Meanwhile, we verified that patients with a high risk had higher

SGOC scores (Fig. 4h). The risk scores were positively correlated to
cell cycle (Fig. 4i). Additionally, oncogenic signaling and cancer
hallmarks were further aggravated in high-risk patients, such as
epithelial-mesenchymal transition (EMT), glycolysis, angiogenesis,
DNA repair, TGFβ signaling, mTORC1 signaling, MYC and E2F
targets (Fig. 4j). Taken together, we have demonstrated that the

Characterizing metabolic heterogeneity in HNSCC
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novel 4-gene SGOC signature might serve as a potential metabolic
biomarker for prognosis prediction. Exploring the heterogeneity of
SGOC metabolism may contribute to finding a precise therapeutic
strategy for each HNSCC patient.

High SGOC relates to low immune cell infiltration and poor
response to immunotherapy
Next, we aimed to characterize the heterogeneity of the TME
between high- and low-risk groups to explore potential immu-
notherapeutic vulnerabilities. In bulk tissues, numerous immune
pathways were identified to be enriched in the low-risk group,
including T cell co-stimulation and cytokine-cytokine receptor
interaction (Fig. S7a, b). Subsequently, we explored the correla-
tions between SGOC risk score and immune signals. We found
that SGOC risk score was negatively correlated with immune
score, stromal score, microenvironment score and lymphocyte
infiltration (Fig. 5a). Low-risk patients showed higher immune
score, stromal score and microenvironment score (Fig. 5b). The
CIBERSORT and MCPcounter deconvolution algorithms indicated
greater infiltration of immune cells in the TME of the low-risk
group compared to the high-risk group, including CD8+ T cells
and follicular helper T cells (Fig. 5c, Fig. S8a, b). Yet, the immune
checkpoint inhibitors PD-1, HHLA2 and TIGIT were highly
expressed in low-risk tumors, implying that the TME of low-risk
patients was characterized by the accumulation of exhausted T
cell infiltration (Fig. 5d).
To further validate the relationship between SGOC metabolism

in malignant cells and the immune microenvironment, the scRNA-
seq profiles were re-clustered into malignant, immune and
stromal cells (Fig. S8c). The SGOC risk scores of malignant cells
were calculated, based on which cells were segregated into SGOC-
low, -medium or -high groups (Fig. 5e). The differentially
expressed genes between SGOC-low and SGOC-high malignant
cells were apparently enriched in immune-related biological
functions, such as T cell activation, T cell mediated immunity,
and T cell mediated cytotoxicity (Fig. 5f). To further validate the
interactions between malignant cells and T cells, the T cells scRNA-
seq profiles were re-clustered into CD8+ T cells, CD4+ T cells,
naïve T cells, cycling T cells and NK T cells (Figure S8d). Analysis of
the interactions between CD8+ T cells and SGOC-low, -medium,
or -high group using the CellCall algorithm revealed that, in
comparison with the SGOC-medium or -high group, SGOC-low
cells had stronger chemotaxis toward T cells, indicating that
SGOC-low cells in the TME mainly attracted T cells (Fig. 5g).
Supporting this, the SGOC risk scores of malignant cells were
negatively related to immune cells and T cell infiltration (Fig. 5h, i).
In short, there is a strong possibility that SGOC metabolic
heterogeneity might reflect different therapeutic responses to
immunotherapy.
Therefore, we recruited the PRJNA482620 and PHS000452

immunotherapy cohorts to explore the relationship between
SGOC risk score and therapeutic responses. Kaplan–Meier survival
analysis confirmed that patients in the low-risk group had better
OS than those in the high-risk group after anti-PD1/PD-L1
immunotherapy treatment. A higher proportion of patients
responded to anti-PD1 treatment was identified in the low-risk
group (Fig. 5j, k). Taken together, these results imply that
compared with high-risk patients, low-risk patients had a more
immunologically active TME and were more sensitive to immu-
notherapy. However, high-risk patients had a poor response to
either chemotherapy or immunotherapy, indicating an urgent
need to find a therapeutic target for high-risk patients.

IMPDH1 is a SGOC metabolic target for provoking the malignant
features of HNSCC cells
For the sake of identifying a potential therapeutic target, we
elucidated the underlying metabolic mechanism between high- and
low-risk groups. Twenty-two metabolic pathways were found to be

upregulated in high-risk patients, among which purine synthesis was
the most noticeably upregulated one (Fig. 6a, Table S5). IMPDH1, the
rate-limiting enzyme of de novo purine synthesis, was substantially
upregulated in the high-risk group (Fig. 6b). Then, we pharmacolo-
gically inhibited the IMPDH1 activity of HNSCC cells using a pan
IMPDH inhibitor (MPA) and its pro-drug (MMF) to assess their anti-
tumor effects.14,15 CCK8 assay showed that treatment with MPA or
MMF dramatically decreased HNSCC cell viability (Fig. 6c, d). EdU
assay demonstrated a direct inhibition of cancer cell proliferation by
MPA (Fig. 6e). MPA treatment increased the proportion of cells in G0/
G1 phase and concomitantly decreased the proportion of cells in G2/
M phase (Fig. 6f). Moreover, the proportion of apoptotic cells and the
expressions of apoptotic markers (cleaved-PARP, cleaved-caspase-9,
cytochrome-c) were increased by MPA (Fig. 6g, h). The wound
healing and Transwell assays revealed that MPA notably suppressed
the migration and invasion capabilities of HNSCC cells (Fig. 6i, k).
Collectively, these results demonstrate that IMPDH-mediated purine
biosynthesis is a promising metabolic target for high-risk HNSCC
patients, pharmacological inhibiting of this pathway might provide a
novel therapeutic strategy.

Inhibiting IMPDH1 represses cancer cell progression via triggering
GTP-exhaustion nucleolar stress in HNSCC
To further investigate the tumor-suppressive effects of the IMPDH
inhibitor in HNSCC, we explored its underlying mechanisms.
IMPDH1 has been known to support cell proliferation by
generating purine nucleotides for DNA replication, RNA (mRNA,
tRNA and rRNA) transcription16,17 (Fig. 7a). Similarly, the differen-
tially expressed genes between SGOC-high and SGOC-low
malignant cells were enriched in purine nucleotide synthesis,
ribosome synthesis and cell cycle (Fig. 7b). Then, we detected the
effects of MPA on ATP and GTP contents using liquid chromato-
graphy, which confirmed that MPA prominently inhibited GTP
production and weakly inhibited ATP production (Fig. 7c). After
treatment with MPA, the nucleoli of HNSCC cells severely shrank,
indicating induced nucleolar stress (Fig. 7d). Nucleolar stress is
characterized by morphological and functional alterations of the
nucleolus and cause molecular changes, including degradation
and delocalization of NPM1 and GNL3 and stabilization of p53,
which in turn contributes to activation of pathways that promote
cell cycle arrest or apoptosis.14,18,19 Western blotting confirmed
that MPA treatment degraded the nucleolar proteins (NPM1 and
GNL3), and increased p53, supporting a nucleolar stress induced
by MPA-mediated inhibition of de novo purine biosynthesis (Fig.
7e).
Hence, we added exogenous guanosine (100 μmol/L) to MPA-

treated HNSCC cells to counteract the effect of the IMPDH
inhibitor. CCK-8 assay results showed that cell viability, originally
suppressed by MPA, was rescued by exogenous guanosine (Fig.
7f). Furthermore, the delocalization of nucleolar protein (NPM1
and GNL3) induced by MPA was reversed by guanosine
supplementation, as evidenced by the relocation of NPM1 and
GNL3 to nucleolus (Fig. 7g). These data provide evidence that
IMPDH inhibitor suppresses HNSCC cell progression by prompting
GTP-exhaustion nucleolar stress.To further elucidate the biological
roles of IMPDH1 in HNSCC, we established HNSCC cells with stable
knockdown of IMPDH1 (Fig. S9). Cellular biological function
experiments demonstrated that, akin to the effects of MPA, the
depletion of IMPDH1 inhibited HNSCC cell viability, migration,
invasion, and induced GTP-exhaustion nucleolar stress and
apoptosis. Importantly, these effects of IMPDH1-shs were reversed
by the addition of exogenous guanosine (Fig. 8). Therefore, these
findings underscore the potential of inhibiting IMPDH1-mediated
purine biosynthesis to impede HNSCC progression.

IMPDH inhibitor suppresses HNSCC tumor growth in vivo
The in vivo pharmacological roles of the IMPDH inhibitor on
HNSCC growth were determined using a subcutaneous tumor
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model in nude mice. Following two weeks of treatment with the
MPA prodrug (MMF, 50 mg/kg), mice were euthanized, and the
subcutaneous tumors were harvested. Compared to the tumors in
the DMSO group, those in the MMF treatment group exhibited
slower growth rates, smaller tumor volumes, and lower tumor
weights (Fig. 9a−c). Remarkably, there was no significant
difference in body weight between two groups, indicating a low
incidence of side effects associated with MMF treatment (Fig. 9d).
Additionally, the levels of nucleolar stress and apoptosis
biomarkers (NPM1, P53 and cytochrome-c) were assessed. In
contrast to the DMSO treatment group, the MMF treatment group

showed reduced NPM1 levels and higher levels of P53 and
cytochrome-c (Fig. 9e).
Furthermore, a subcutaneous model was established using

immune-competent C3H mice to evaluate the impact of MMF on
anti-tumor immunity. After two weeks of MMF treatment (50mg/kg),
the subcutaneous tumors and spleens of C3H mice were dissociated,
and the immune cells within the tissues were isolated. Results
demonstrated that MMF significantly attenuated tumor growth,
leading to reduced tumor volumes and weights, with no significant
effects observed on body weight (Fig. 9f−i). Flow cytometry analysis
revealed no significant differences in the proportions of tumor-
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infiltrating CD8+ T cells or the expression levels of IFN-γ, PD-1, and
LAG-3 between the MMF and DMSO groups, indicating minimal
effects of MMF on CD8+ T cell infiltration and activation (Fig.
S10a–d). Overall, these findings highlight the IMPDH inhibitor’s
capacity to effectively suppress HNSCC tumor growth in vivo while
demonstrating a low incidence of side effects.

DISCUSSION
To sustain aggressive behaviors and adapt to the complex and
changing microenvironment, cancer cells undergo plentiful
metabolic adaptations.20 Targeting specific metabolic phenotypes
presents vulnerabilities to anti-cancer treatment and yields varied
clinical outcomes.21,22 Abundant metabolic molecules have been

identified and have shown promising efficacy in halting tumor
progression in preclinical studies.23,24 However, the unsatisfactory
efficacy of metabolic therapies in clinical trials underscores the
urgent need to recognize the flexibility and intricacy of the
metabolic network in human cancers. HNSCC is one of the most
aggressive human cancers and harbours numerous metabolic
alterations, as reported in our previous work and others.12,20 Yet,
the currently identified metabolic alterations in HNSCC tumours
have mostly been based on bulk tissue studies. The complex
cellular compositions of bulk tissues seriously hinder the accurate
identification of metabolic alterations in malignant cells. Recent
advances in scRNA-seq greatly facilitate the study of individual cell
populations and enable a multidimensional exploration of intra-
and inter-tumour metabolic heterogeneity. Here, we leveraged the
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scRNA-seq profiles to explore the metabolic heterogeneity of
malignant cells in HNSCC. Several metabolic alterations in
malignant cells that were previously overlooked were identified
in scRNA-seq profiles, including the SGOC network. Consequently,
the significant differences in results obtained by these two
methods suggest a complementary relationship, enabling the
redefinition of intra- and inter-tumour metabolic heterogeneity
and its influence on the TME of HNSCC. Although we observed
apparent upregulation of the branched metabolic pathways of the
SGOC network in malignant cells, the glycine-serine-threonine
metabolism was found to be downregulated in bulk tissues,
significantly hindering the study of its roles in HNSCC progression.
Sub-clusters of malignant cells from a single patient exhibited
distinct expression patterns of the SGOC network, indicating its
flexible role in adapting to the complex TME and regulating tumor
progression. Despite the intra-tumor heterogeneity, HNSCC
patients with high SGOC expressions experienced unfavourable
clinical outcomes. Recently, the oncogenic roles of SGOC
metabolism have been highlighted due to its crucial roles in
maintaining the aggressive behaviors of malignant cells, such as
uncontrolled proliferation, metastasis, chemotherapy resistance,
and immune evasion.25–27 For example, Increased SGOC genes
expressions in colorectal cancer could facilitate tumor progress.28

Transcriptional profiling revealed that high-risk human neuroblas-
tomas acquired a metabolic program characterized by transcrip-
tional activation of the serine-glycine synthesis pathways, leading
to poor clinical outcome.29 Moreover, enhanced serine biosynth-
esis pathway is associated with drug resistance of melanoma,
pancreatic, and non-small cell lung cancers.30 In oral squamous
cell carcinoma (OSCC), the imbalance in the amino acid and purine
metabolic pathway was reported to affect patients’ prognosis.31 In
the present study, we characterized that the SGOC network was
associated with the aggressive features of HNSCC malignant cells,
such as cell cycle and several oncogenic signaling pathways,
demonstrating its essential roles in tumorigenesis.
Growing evidence has indicated that genes of the SGOC

metabolism can serve as prognostic markers and potential
therapeutic targets for tumor treatment.32 To better understand
the clinical application potential of the SGOC network in HNSCC,
we developed a novel classifier of a 4-gene SGOC prognostic
signature (PRT1, TBPL1, PLOD2, and SLC44A4). HPRT1, which plays
a central role in the generation of purine nucleotides through the
purine salvage pathway, has been identified as an unfavourable
prognostic marker in many cancers, including HNSCC.33 TBPL1
encodes a member of the TATA box-binding protein family,
activating the transcription of metabolic genes. PLOD2 catalyses
the hydroxylation of lysyl residues and could promote the
metastasis capacity of gastric cancer, sarcoma and colorectal
cancer34–36 However, SLC44A4, which was reported to be
upregulated in prostate and pancreatic cancers,37 was down-
regulated in malignant cells and correlated with a good prognosis
for HNSCC, indicating an undefined role in tumor suppression that
needs further elucidation. Our subtyping system based on the
4-gene SGOC prognostic signature could separate patients with
aggressive tumours and provide valuable information about
clinical values in prognosis and treatment responses. Patients
with lower SGOC risk scores had better clinical outcomes.
Immune checkpoint inhibitors (ICIs), represented by PD-1/PD-

L1, have ushered in a new era of immunotherapy for HNSCC.
Nevertheless, a significant proportion of patients fail to respond to
ICIs. Therefore, it is necessary to find biomarkers to assist in
decision-making regarding immunotherapy selection. The dysre-
gulated SGOC metabolism facilitates cancer cell immune evasion
and affects tumour microenvironment via its products and
intermediates. For example, 2'3’-cyclic GMP-AMP (cGAMP) is a
critical metabolite in activating the innate immune STING path-
way. Depletion of extracellular cGAMP reduces immune cell
infiltration and lead to immune escape.38 High levels of ATP could

activate dendritic cells in the TME, promoting antigen presenta-
tion and antitumor immunity.39 Adenosine, generated by the
degradation of extracellular ATP, acted as an immune suppressor
by inhibiting the proliferation of effector T lymphocytes and the
secretion of inflammatory cytokines.40 This study revealed that
HNSCC patients with low SGOC metabolism had more CD8+

T cells infiltration, and showed better responses to either
chemotherapy or immunotherapy, whereas patients with higher
SGOC risk scores had worse responses to current treatment
therapies, potentially due to the upregulation of IMPDH1-
mediated purine synthesis.
Targeting metabolic vulnerabilities could increase the specificity

and sensitivity of established therapies, and has garnered
significant interest recently.41 Cancer cells upregulate the
IMPDH-mediated purine synthesis to meet the increasing demand
for DNA replication, rRNA transcription, and ribosomal biogenesis,
blocking which could induce nucleolar stress.41 For example,
enhancement of de novo purine biosynthesis was considered as a
major driver of chemoresistance in glioblastoma, which could be
repressed by the IMPDH inhibitors.14,15,42 MPA and MMF have
been shown to inhibit cell proliferation, induce differentiation, or
apoptosis in many cancers, such as non-small cell lung
adenocarcinoma, colon cancer, and leukemia. However, their
anti-tumor effects in HNSCC are still unknown. Our findings
emphasize that inhibition of IMPDH could repress the prolifera-
tion, migration and invasion capabilities of HNSCC cells by
decreasing GTP production, expanding the scope of IMPDH1
inhibitors in anti-tumor therapy.
Our study illuminates the pivotal role of the SGOC metabolism

in the progression and immune microenvironment modulation of
HNSCC. We introduced a novel molecular classification system for
HNSCC based on the intrinsic heterogeneity of SGOC metabolism,
revealing its significance as a prognostic indicator and therapeutic
target. High SGOC metabolism was associated with aggressive
tumor behavior and resistance to current treatment modalities,
while low SGOC metabolism correlated with better treatment
response, particularly to chemotherapy and immunotherapy.
Additionally, our findings elucidate the dysregulation of
IMPDH1-regulated purine biosynthesis in high-risk patients,
presenting an opportunity for targeted therapy using IMPDH
inhibitors to inhibit tumor progression (Fig. 10).
In conclusion, this comprehensive understanding of SGOC

metabolism provides valuable insights into tumor and tumor
microenvironment heterogeneity in HNSCC, paving the way for
refined molecular stratifications and the development of tailored
therapeutic approaches. By targeting metabolic vulnerabilities, we
can potentially enhance the efficacy of existing therapies and offer
novel avenues for the treatment of HNSCC.

MATERIALS AND METHODS
Data collection
The scRNA-seq profiles, including normal tissues (n= 9), tumor tissues
(n= 20), and lymph nodes (n= 4), were downloaded from
GSE181919. Gene expression data and related clinical information
for TCGA-HNSC (normal = 44, tumor = 499) were obtained from
UCSC Xena, with one patient (TCGA-CQ-A4CA-01) excluded due to
missing survival data. For verification, datasets GSE41613, GSE65858,
GSE42743, GSE30784, GSE25099, GSE37991 and GSE31056 were
employed. Additionally, GBM-PRJNA482620 and Melanoma-
PHS000452 from the TIGER database were acquired for immunother-
apy studies. All expression data were log2 transformed.

Quality controlling, processing and clustering of scRNA-seq data
Quality control and cell type annotation for GSE181919 were
conducted following methods described in the corresponding
article.43 In brief, the “Seurat 4.0” R package was used to filter the
raw data of the gene expression matrix, resulting in the inclusion
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of a total of 47,711 cells for subsequent analysis. Batch effects of
samples were corrected using “RunHarmony” in the “Harmony” R
package. Dimension reduction and clustering were performed
using UMAP with the “RunUMAP” and “FindClusters” functions.
Cell types were annotated manually based on marker genes
calculated by “FindAllMarkers” function. The “inferCNV” R package
was exploited to distinguish malignant cells from epithelial cells of
tumor tissues by calculate copy number variations (CNVs).

Clarification of SGOC metabolic heterogeneity
For tumor metabolic heterogeneity analysis, single-sample gene
set enrichment analysis (ssGSEA) was carried out using the “GSVA”
package. The differential expressions of 114 metabolism pathways
between non-malignant and malignant epithelial cells, as well as
normal and tumor tissues, were calculated using the “Limma”
package. Next, 425 genes involved in serine, glycine, one-carbon,
folate, methionine, purine, and pyrimidine were downloaded from
the Molecular Signature Database (MSigDB) and used to construct
the SGOC metabolic network with five branched pathways44–46

(Table S2).
Malignant cells were classified into five groups using UMAP with

the “RunUMAP” and “FindClusters” functions. The DEGs of the
clusters were filtered using a threshold of adjusted P-values of <
0.05 and |log2FC | > 0.20. Kyoto encyclopaedia of genes and
genomes (KEGG) pathway analysis was performed using the
‘clusterProfiler’ R package to evaluate the enrichment pathways of
the sub-clusters. Then, deconvolution of the bulk RNA-Seq
datasets were was performed using “MuSiC” R package.47

Univariate Cox regression analysis and Kaplan–Meier (K-M) survival
curve analyses were conducted to evaluate prognostic value using
the ‘survminer’ and ‘survival’ R packages.

Construction of a prognostic SGOC-related gene signature
The differentially expressed SGOC metabolic genes between non-
malignant and malignant cells in scRNA-seq data were calculated
by the “Findmarkers” algorithm with the same threshold as
mentioned above. The prognostic values of the dysregulated SGOC
genes were determined using univariate Cox regression analysis.

Subsequently, 13 dysregulated prognostic SGOC genes (P < 0.05)
were selected to construct a prognostic signature through LASSO-
Cox regression analysis using the ‘glmnet’ R package. Penalty
parameter lambda (λ) of the model was determined by 10-fold
cross-validation. The risk score of each patient was calculated
according to the normalized expression of the candidate genes
(Expi) and their corresponding regression coefficients (Coei). The
formula for the risk score was constructed as follows:

Risk score ¼
XN

i¼1

ðExpi ´ CoeiÞ

The final formula is as follows: Risk Score= 0.256 × PLOD2+ 0.251 ×
HPRT1+ 0.407 × TBPL1-0.112 × SLC44A4.
The risk score was calculated for each HNSCC patient, and

based on this score, patients were stratified into high-risk and low-
risk groups using an optimal cutoff value. Kaplan−Meier survival
curve analysis was then conducted to evaluate the prognostic
value of the SGOC gene signature using the ‘survminer’ and
‘survival’ R packages.

Functional enrichment analysis of high- and low- risk HNSCC
patients
DEGs between high- and low-risk groups in the TCGA-HNSC
cohort were calculated using the R packages “limma”. For scRNA-
seq data, malignant cells were extracted, and the risk score was
calculated. The top 30% of risk scores were defined as the high
risk group, while the bottom 30% were defined as the low risk
group. DEGs between high- and low-risk groups in the scRNA-seq
cohort were calculated using the R packages “FindMarkers”. The
ssGSEA was carried out to analyze the enrichment of metabolism
pathways. GO and KEGG pathway analysis were performed using
the ‘clusterProfiler’ R package. The P-values of ssGSEA, GO terms
and KEGG pathways were corrected. The correlation between
SGOC-risk score and cell cycle score was calculated using
Spearman correlation analysis.
The stromal score, immune score, ESTIMATE score and tumor

purity score of each sample were computed using the “ESTIMATE”
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Fig. 10 Graphical summary of stratifying HNSCC based on SGOC metabolism heterogeneity
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R package. The xCell score calculated by “xcell” R package
provides a comprehensive tumor microenvironment landscape.48

The levels of immune cells in the TME were estimated by the
CIBERSORT, xCell, and MCPcounter algorithms. Additionally, the
correlations between the risk score and immune score, or immune
cells infiltration, were calculated using Spearman correlation
analysis, and the results were plotted by the “corrplot” R package.

Cell-cell communication
T cells were re-clustered to perform the analysis of cell-cell
communication through “RunHarmony”, “RunUMAP” and
“FindClusters” functions. CD8+ T cells, high, low and median risk
malignant cells were selected and “CellCall” algorithm49 was used
to analyze the intercellular communication.

Cell culture
Human HNSCC cell lines (HSC3, HSC4, HSC6, Cal33, CAL27, SCC1,
HN6) were maintained in our laboratory in Guangzhou,
China.12,50,51 CAL27, CAL33, HSC3, HSC6, and SCC1 cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco)
supplemented with 10% fetal bovine serum (FBS; Gibco, USA).
HN6 cells were grown in DMEM/F-12 (Gibco, USA) supplemented
with 10% FBS. HSC4 cells were cultured in Minimum Essential
Medium (MEM; Gibco, USA) supplemented with 10% FBS. The
following inhibitors were used in this study: mycophenolic acid
(MPA, Selleck, USA), mycophenolate mofetil (MMF, Selleck, USA).

Plasmid construction and transfection
HNSCC cells with stable knockdown of IMPDH1 were generated as
previously reported.12,50 The plko.1-shNC-GFP-puro, plko.1-
IMPDH1-sh1-GFP-puro, and plko.1-IMPDH1-sh2-GFP-puro plas-
mids were obtained from Long Bioscience (Guangzhou, China).
Briefly, the IMPDH1-shs or shNC plasmids were co-transfected with
lentivirus packaging plasmids psPAX2 and pMD2.G into
293FT cells using polyethylenimine. Subsequently, lentiviral
particles were collected and used to infect HSC6 cells. The stably
transfected cells with shNC or IMPDH1-shs were selected using
puromycin (10 mg/ml) (Sigma). The efficiency of knockdown was
evaluated by quantitative real-time PCR and western blotting
assays.

Quantitative real-time PCR assay (qPCR)
The mRNA level of IMPDH1 was measured using qPCR. The SYBR
Green-based qPCR analysis was conducted with the Light-Cycler
96 system (Roche). GAPDH served as an endogenous control for
IMPDH1. The relative expression levels were calculated using the
comparative threshold cycle equation (2 -ΔΔCT). The primer
sequences were used as follows: IMPDH1, Forward Primer: 5’-
CAGCAGGTGTGACGTTGAAAG-3’; Reverse Primer: 5’-AGCTCATCG-
CAATCATTGACG-3’. GAPDH, Forward Primer: 5’-CTCCTCCTGTTCGA-
CAGTCAGC-3’, Reverse Primer: 5’-CCCAATACGACCAAATCCGTT-3’.

CCK-8 assay
For cell viability assessment, the CCK-8 assay was applied.
Approximately 1.5 × 103 cells per well were seeded in 96-well
plates. Following incubation with either DMSO or MPA treatment
for the indicated times (0, 1, 2, 3 and 4 days), the cell medium was
discarded, and cells were exposed to a mixture of 10 μL CCK8
(Sigma-Aldrich, USA) and 100 μL serum-free medium for an
additional 2 h before detection. Cell viability was recorded based
on absorbance readings at 450 nm using a spectrophotometric
plate reader (Biotek, USA).

EdU click chemistry assay and fluorescence imaging
Briefly, 1 × 105 cells per well were seeded in confocal dishes.
Following incubation with either DMSO or MPA treatment for 24 h,
cells were exposed to 1 μL EdU (Beyotime, China). Then, cells were
washed with phosphate-buffered saline (PBS, Sigma-Aldrich, USA),

fixed in a 4% paraformaldehyde solution, permeabilized with 0.3%
Triton-X 100 in PBS, and subjected to incubation with a reaction
cocktail containing the necessary compounds for bonding of
Alexa Fluor® 488 azide with EdU. Finally, cell nuclei were stained
with DAPI (Sigma-Aldrich, USA). Cell imaging was performed using
a laser scanning microscope (LSM 980, ZEISS).

Flow cytometry analysis
For cell cycle detection, CAL27 and HSC6 cells treated with either
DMSO or MPA were seeded into 60mm dishes. Once cell
confluence reached 80%, the cells were fixed in 70% cold ethanol
and then subjected to testing with the Cell Cycle Detection Kit
(KeyGEN, China). The fluorescence signals were recorded using
flow cytometry (Cytoflex, Beckman Coulter, USA).
For the apoptosis assay, CAL27 and HSC6 cells treated with

DMSO, MPA or guanosine were seeded in 6-well plates. After
incubating with serum-free medium for 24 h, the cells were
harvested. An Annexin VFITC/ PI Apoptosis Detection Kit (KeyGEN,
China) was used to detect apoptotic cells. HSC6 IMPDH1-shs or
shNC cells were dyed by Annexin V-APC/DAPI Apoptosis Kit
(Procell, China). The flow cytometer was performed to count these
apoptotic cells.
For detecting the expressions cytokines of CD8+ T cells, tumor or

spleen tissues derived from C3H mice were grinded into single cells.
Then, cells were stimulated in vitro with cell stimulation cocktail
(1:500, TNB-4975-UL100, Tonbo Biosciences) for 5 h at 37 °C with 5%
CO2, followed by PI staining for 15min and surface markers staining
for 30min in the dark. Next, cells were fixed and permeabilized with
intracellular fixation and permeabilization buffer, and stained with
intracellular cytokine antibodies according to the manufacturer’s
instructions. The following antibodies were used: CD8α (FITC
conjugated, 53-6.7, Cat#100706, Biolegend), CD3e (APC conjugated,
145-2C11, Cat#100312, Biolegend), PD-1(Percp-Cy5.5 conjugated,
29 F.1A12, Cat#135208, Biolegend), LAG3 (Bv421-Conjugated,
C9B7W, Cat#125221, Biolegend), Tim-3 (PE-Cy7 conjugated, RMT3-
23, Cat#25-5870-82, eBioscience), IFN-γ (APC-eFlour 780 conjugated,
XMG1.2, Cat#47-7311-82, eBioscience), TOX (PE-conjugated, TXRX10,
Cat#12-6502-80, eBioscience).

Western blotting
Cells were washed with ice-cold PBS and lysed with RIPA strong
lysis buffer (Sigma-Aldrich, USA) supplemented with 1% protease
and 1% phosphatase inhibitors (Beyotime, China). Then, 5×
loading buffer (Beyotime, China) was added to the protein
samples and cooked at 99°C for denaturation. The lysates were
loaded onto 10% SDS-PAGE gel for separation and transferred to a
0.22 μm PVDF membrane (Millipore, USA). After blocking in 1×
Protein Free Rapid Blocking Buffer (EpiZyme), the membranes
were incubated with primary antibodies at 4 °C overnight,
followed by incubation with species-matched secondary anti-
bodies. Finally, the antigen-antibody reaction was tested by
enhanced chemiluminescence (ThermoFisher, USA). The following
antibodies were used: GAPDH (60004-1, 1:3 000, Proteintech), p53
(10442-1-AP, 1:1 000, Proteintech), B23/NPM1 (60096-1, 1:1 000,
Proteintech), GNL3 (67169-1, 1:1 000, Proteintech), Cytochrome-C
(66264-1, 1:2 000, Proteintech), rabbit IgG HRP-linked (7074, 1:3
000, CST), mouse IgG HRP-linked (7076, 1:3 000, CST), Cleaved
PARP (5625, 1:1 000, CST), PARP (9532, 1:1 000, CST), Cleaved
caspase-9 (20750, 1:1 000, CST), IMPDH1 (861791, 1:500, Zen
BioScience).

Migration and invasion assays
Cells were scratched using a 10 μL pipette after the cells in the six-
well plate. Photos were taken at 0 h and 24 h after scratching. To
evaluate the migration capability, 6 × 104 CAL27 or HSC6 cells in
100 μL serum-free medium were added to the upper layer of
transwell chamber (Corning, USA). The lower chamber of transwell
was supplemented with DMEM medium with complete serum-

Integrative single-cell and bulk transcriptomes analyses reveals. . .
Wang et al.

15

International Journal of Oral Science           (2024) 16:44 



medium. After 18 h for migration and 24 h for invasion, cells on
the lower surface were fixed with 4% paraformaldehyde solution,
stained with 0.4% crystalviolet (Beyotime, China), and counted
under a microscope.

Immunofluorescence assay
Cells were harvested and fixed with 4% paraformaldehyde. After
permeabilization using 0.3% Triton-X 100 in PBS, cells were
incubated with the primary antibodies at 4 °C overnight. Then,
cells were stained with species-matched fluorescent secondary
antibodies. Nuclei were stained with DAPI. The slides were viewed
using a laser scanning microscope. The following antibodies were
used: B23/NPM1 (60096-1, 1:200, Proteintech), GNL3 (67169-1,
1:200, Proteintech), Donkey anti-Mouse IgG (H+ L) Alexa Fluor
Plus 488 (A32766, 1:1 000, ThermoFisher).

GTP and ATP content measurement
CAL27 or HSC6 cells treated with DMSO, MPA or guanosine were
seeded in 60 mm dishes and subsequently harvested. Then cells
were incubated with 80% cold carbinol (V/V) at 4 °C and collected.
After centrifugation, the supernatant was collected and dried by a
vacuum centrifugal concentrator at −50 °C to collect the
precipitate. Then, the samples were dissolved in 60% acetonitrile
before detecting the ATP and GTP content using a Triple
quadrupole LC/MS.

In vivo tumor models
All animal research procedures were carried out in strict
accordance with the detailed rules of the Institutional Animal
Care and Use Committee of Sun Yat-Sen University, with approval
numbers 2023000092 and 2023003617. A total of 1 × 106 HSC6
cells were subcutaneously injected into twelve female BALB/c
nude mice (4–6 weeks old), while 5 × 106 SCC7 cells were
subcutaneously injected into twelve female C3H mice (4 weeks
old). Upon reaching tumor volumes of approximately 40mm3, the
mice were randomly divided into 2 groups and intraperitoneally
injected with either DMSO or MMF every 2 days. Accordingly, the
tumor volumes were recorded. After 2 weeks of injection and
tumor growth, the mice were sacrificed, and primary tumors and
spleens were collected.

Immunochemistry (IHC) analysis
IHC was performed on xenograft mice tissues.50 Briefly, dewaxing
was carried out using xylene, followed by rehydration using alcohol
with a gradient concentration. Endogenous peroxidase activity was
blocked by 3% H2O2. Then, the slices were subjected to citrate-
mediated high-temperature antigen retrieval. Afterward, slides were
blocked with goat serum and incubated with primary antibodies
overnight. Following washing with TBST solution, slides were
incubated with secondary antibodies at room temperature. The
Apreio AT2 digital whole slide scanner (Leica, Wetzlar, Germany)
was applied to scan the slices. The following antibodies were used:
B23/NPM1 (60096-1, 1:200, Proteintech), Cytochrome-C (66264-1,
1:2 000, Proteintech), p53 (10442-1-AP, 1:1 000, Proteintech).

Statistical analysis
The bioinformatics and statistical analyses were conducted using R
4.3.1, SPSS 27 and GraphPad Prism 8.0 softwares. The Student’s t
test or ANOVAs (one- or two-way) was used to preform statistical
analyses. Data presented as the mean ± SD were extracted from at
least three independent experiments. P < 0.05 was considered as
significant.
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