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BACKGROUND: Research suggests racial/ethnic disparities in prenatal exposure to endocrine disrupting environmental phenols
(EPs) in limited populations. However, no studies have investigated racial/ethnic disparities in prenatal EP exposure across the U.S.
OBJECTIVES: To estimate demographic differences in prenatal urinary EPs among participants in the Environmental influences on
Child Health Outcomes (ECHO) Cohort.
METHODS: An analysis of 4006 pregnant ECHO participants was performed, with 7854 specimens collected from 1999–2020.
Racial/ethnic identity was self-reported. Urinary levels of 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP),
benzophenone-3 (BP-3), bisphenols A (BPA), F (BPF), and S (BPS), and methyl- (MePb), ethyl- (EtPb), propyl- (PrPb), and butyl- (BuPb)
parabens were measured at one or more time points during pregnancy. Effect estimates were adjusted for age, pre-pregnancy
body mass index, educational level, gestational age and season at urine collection, and ECHO cohort.
RESULTS: Participants were classified as Hispanic of any race (n= 1658), non-Hispanic White (n= 1478), non-Hispanic Black
(n= 490), and non-Hispanic Other (n= 362), which included individuals of multiple races. Urinary 2,4-DCP and 2,5-DCP
concentrations were 2- to 4-fold higher among Hispanic, non-Hispanic Black, and non-Hispanic Other participants relative to non-
Hispanic White participants. MePb was ~2-fold higher among non-Hispanic Black (95% confidence interval (CI): 1.7–3.1) and non-
Hispanic Other (95% CI: 1.5–2.8) participants. PrPb was similarly higher among non-Hispanic Black (95% CI: 1.7–3.7) and non-
Hispanic Other (95% CI: 1.3–3.1) participants. EtPb was higher among non-Hispanic Black participants (3.1-fold; 95% CI 1.7–5.8). BP-3
was lower in Hispanic (0.7-fold; 95% CI: 0.5–0.9), non-Hispanic Black (0.4-fold; 95% CI: 0.3–0.5), and non-Hispanic Other (0.5-fold;
95% CI: 0.4–0.7) participants. Urinary BuPb, BPA, BPF, and BPS were similar across groups.
IMPACT STATEMENT: This multisite, observational cohort study investigated whether there are racial and ethnic differences in
prenatal exposure to endocrine disrupting environmental phenols and parabens. Among 4006 participants from multiple U.S.
cohorts who provided urine specimens during pregnancy, those who self-reported a racial and ethnic identity other than non-
Hispanic White had higher urinary concentrations of 2,4-dichlorophenol, 2,5-dichlorophenol, methyl paraben, ethyl paraben, and
propyl paraben and lower urinary concentrations of benzophenone-3 than those reporting as non-Hispanic White. These data show
differences in prenatal concentrations of endocrine disrupting environmental phenols and parabens by racial and ethnic identity.
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INTRODUCTION
Gestational exposure to environmental endocrine disrupting
chemicals (EDCs) is widespread [1, 2]. Environmental phenols
(EPs), including parabens, are types of EDCs with reported
estrogenic, anti-androgenic, and thyroid-hormone effects [3].
These chemicals are employed in the manufacture of polycarbo-
nate plastics, food packaging, heat transfer papers like receipts,
and medication, among other commercial products, and as
ultraviolet filters and preservatives in sunscreens, personal care
products, and processed foods as summarized in Supplementary
Table 1 [4–8]. Exposure occurs through consumer items, food
packaging, personal care products, and household dust [9, 10],
and many EPs readily cross the placenta to expose the developing
fetus [11]. Despite short in vivo half-lives, EPs are detected
frequently in human biospecimens, underscoring their pervasive
nature. Prenatal exposure to EPs has been associated with
reproductive morbidities, infertility, adverse birth outcomes,
altered fetal and child development, and long-term health risks
among offspring, possibly partially accounting for poorer repro-
ductive health outcomes among minoritized populations [12–14].
Results of U.S. biomonitoring studies, using data from the

National Health and Nutrition Examination Survey, indicate that EP
exposure tends to be disproportionately experienced by non-
White and low-income groups in the general population [15–19].
Previous studies of urinary EPs among pregnant people in the U.S.
have also reported racial, ethnic, and socioeconomic disparities in
exposure to EPs [20–24]. Residents of socioeconomically dis-
advantaged and minoritized communities may experience greater
risks of exposure to EPs than advantaged and non-Hispanic White
communities, due to greater proximity to industry and waste
management facilities, and a limited selection of consumer
products and fresh foods [25]. However, these previous studies
were limited in size and scope, mostly offering insight into the
nature and extent of the exposure disparity on a local basis and/or
did not consistently report racial/ethnic differences with adjust-
ment for social determinants. No studies have comprehensively
characterized the differences in concentrations of EPs among
pregnant people with various self-reported racial and ethnic
identities and across different regions of the U.S. [26].
We leveraged extant urinary gestational EP data from 11

cohorts across the U.S. and Puerto Rico within the Environmental
Influences on Child Health Outcomes (ECHO) Cohort to help
address this important public health data gap. Synthesizing results
across multiple studies from different U.S. regions can help inform
policy makers on target priorities to eliminate disparities in
exposure to EDCs among pregnant populations at a large scale.
We selected the EPs for study based on a high reported
prevalence of exposure in U.S. study populations, evidence of
endocrine disruption, and availability in the ECHO cohorts. We
hypothesized that non-White pregnant people would have higher
urinary concentrations of most EPs than their White counterparts,
conditional on social determinants.

METHODS
Study participants
The ECHO Cohort consists of mother–offspring pairs in 69 different birth
cohorts from across the U.S. [27]. All participants completed written
informed consent for participation in their cohorts and consented to data
sharing with the ECHO program. We excluded cohorts with <30 eligible
participants and participants were required to have at least one urine
specimen collected during pregnancy, with laboratory determination of at
least one EP, leaving 4139 participants from 11 ECHO cohorts (96.8% were
singleton pregnancies, 3% were missing, and 0.2% were multiple
gestations). We retained only singleton pregnancies. Thus, a total of
7854 urine specimens from 4006 participants from 11 ECHO cohorts were
included in the final analytic sample (Supplementary Figs. 1 and 2;
Supplementary Table 2). The study protocol was approved by the single

ECHO institutional review board, WIRB Copernicus Group Institutional
Review Board.

Sociodemographic characteristics
Participants self-reported their racial/ethnic identities, which we subse-
quently categorized as Hispanic of any race, non-Hispanic Black, non-
Hispanic White, and non-Hispanic Other—a category that included non-
Hispanic Asian, Hawaiian, American Indian, Alaskan Native, multiple races,
and other racial identities (the small number of participants in each group
precluded statistical analysis of the individual identities). Race is a social
construct, used in this analysis as a proxy for individual and systematic
lived experiences of racism and discrimination resulting from complex
prior and ongoing historical processes based (primarily) on racial grouping
[28, 29]. Participants also self-reported their highest completed level of
education, used as a proxy for socioeconomic position [30]. Educational
level was categorized as ≥bachelor’s degree and <bachelor’s degree based
on differences in social advancement and lifetime earnings potential [31].
Home address was geocoded in a subset of participants and categorized
using Social Vulnerability Index (SVI), a census tract-level composite
indicator variable of neighborhood stressors that incorporates 16 measures
of socioeconomic status, household characteristics, racial and ethnic
minority status, and housing type and transportation [32].

Urinary EP measurements
Participants provided one or more urine specimens during pregnancy,
which were analyzed for EPs by participating laboratories (Supplementary
Table 2). We imputed chemical values measured below the limit of
detection (LOD) as the LOD/√2 (Supplementary Table 3) [33]. Urine
samples submitted to the different study laboratories were returned with
either specific gravity or creatinine values. Every study participant had
either a urinary specific gravity or urinary creatinine value reported.
Depending on which was reported, a correction was applied to correct for
differences in urinary dilution, by multiplying the measurement by the
ratio of the creatinine or specific gravity in a reference population to
the participant’s observed creatinine or specific gravity, respectively, using
the Boeniger method [34], as recently recommended for combining
cohorts with different measures of urinary dilution [35]. We considered the
following EPs measured widely among participating cohorts and
implicated as EDCs: 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-
DCP), benzophenone 3 (BP-3), bisphenol A (BPA), bisphenol F (BPF),
bisphenol S (BPS), methyl paraben (MePb), ethyl paraben (EtPb), propyl
paraben (PrPb), and butyl paraben (BuPb). Common routes and sources of
exposure are summarized in Supplementary Table 1.

Data analysis
To estimate associations of racial/ethnic categories and educational level
with urinary chemical concentrations, we applied linear mixed regression
models with a censored normal distribution, including a random intercept
for participants. Urine specimens were analyzed at different laboratories,
employing different methods and instruments that had distinct LODs, so
LOD values vary across the cohorts as shown in Supplementary Table 3. We
used a censored regression model to help address this challenge in
pooling the laboratory results from the different cohorts. Such models can
accommodate varying left-censored observations lower than the LOD by
partitioning the likelihood function into components predicting values
lesser and greater than the LOD. Specifically, the model first creates an
indicator variable that flags whether a measured value is below or above
the LOD. This indicator variable is included in the model to appropriately
account for differences in LOD across cohorts and optimization is either
based on an expectation maximization algorithm or Gauss-Hermite
quadrature [36, 37].
In all of the multivariable models, we adjusted for maternal highest

education level, ECHO cohort, gestational age at specimen collection (in
weeks), season of specimen collection, maternal age at specimen
collection (in years), and maternal pre-pregnancy body mass index (in
kg/m2) as fixed effects. Covariates were selected based on hypothesized
relationships of racial/ethnic identity with urinary chemical concentrations
according to the literature using a directed acyclic graph [38, 39]
(Supplementary Fig. 3). We did not adjust for year of urine collection as
it was colinear to study cohort. To evaluate effect measure modification in
the pattern of associations, we stratified the educational level predictor
model by racial/ethnic identity. To address the potential impact of
neighborhood-level confounding and to disentangle influences of

M.S. Bloom et al.

2

Journal of Exposure Science & Environmental Epidemiology



structural socioeconomic disadvantage from self-reported race/ethnicity,
we performed sensitivity analyses in which we adjusted for SVI in a
subsample of 2117 participants with a geocoded home address. To
evaluate the influence of gestational age at urine collection, we performed
sensitivity analyses using only second trimester data, which accounted for
the majority of urine specimens collected. We also performed a leave-one-
cohort-out analysis to assess the influence of individual ECHO cohorts.
We used multiple imputation by chained equations to impute missing

covariates and pooled estimates from the imputed data sets using Rubin’s
rules. During sensitivity analyses, the list of covariates adjusted in each
model varied based on data availability. Stratifying the dataset exclusively
to a specific race/ethnicity or educational level resulted in scenarios where
certain variables did not exhibit variability and were excluded from the
analysis. Furthermore, because of the unbalanced nature of repeated
measurements, stratifying the dataset during sensitivity analyses resulted
in datasets with one observation per subject or all observations above the
LOD for certain strata. We used general linear or linear mixed effects
models, respectively, in these scenarios. Statistical significance was defined
as a 2-sided p < 0.05. We further adjusted the type-1 error rate using a
conservative Bonferroni approach for the effective number of tests of each
predictor, as 0.05/10= 0.005 [40]. Statistical analyses were performed
using R statistical software, v.4.2.2 (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS
Sociodemographic characteristics of the participants
Study participants self-reported Hispanic (41.4%), non-Hispanic
Black (12.2%), non-Hispanic Other (9.0%), and non-Hispanic White
(36.9%) race and ethnicity (Table 1). Approximately half (46.8%)
had completed a bachelor’s degree. The mean gestational age at
urine collection was 20.1 weeks, with an interquartile range of
14–26 weeks.

Distributions of urinary EP concentrations
Ten urinary chemicals were measured in participants (Supple-
mentary Table 4). Nine of the 10 EPs were detected in a majority of
participants, except for BPF (40.31% > LOD). MePb had the highest
median urinary concentration (58.56 µg/L), and BuPb had the
lowest (0.16 µg/L). There were moderate to strong positive
correlations among Log-transformed urinary EtPb, BuPb, MePb,
and PrPb (r= 0.34-0.79), and between log-transformed urinary 2,4-
DCP and 2,5-DCP (r= 0.58) (Supplementary Fig. 4). The distribu-
tion of urinary chemicals varied by ECHO cohort (Supplementary
Fig. 5).
Boxplots of log-transformed urinary chemical concentrations

are shown according to self-reported maternal racial/ethnic
identity (Fig. 1). Non-Hispanic Black participants had higher
urinary 2,4-DCP, 2,5-DCP, EtPb, MePb, and PrPb concentrations
than participants with other racial/ethnic identities. Urinary BPA
and BPS concentrations were highest among Hispanic partici-
pants, and BP-3 was highest among non-Hispanic White
participants.

Associations between self-reported maternal racial/ethnic
identity category and urinary EPs
Figure 2 and Supplementary Table 5 show the covariate-adjusted
associations between self-reported racial/ethnic identity and
urinary chemicals. Relative to non-Hispanic White participants,
Hispanic participants had 1.50-fold (95% confidence interval (CI):
1.20–1.87) and 4.07-fold (95% CI: 3.05–5.42) greater urinary 2,4-
DCP and 2,5-DCP concentrations, respectively, but a 0.67-fold
(95% CI: 0.52–0.85) lower urinary BP-3 level; non-Hispanic Black
participants had 3.08-fold (95% CI: 2.22–4.27), 2.30-fold (95% CI:
1.73–3.06), 3.11-fold (95% CI: 1.66–5.82), and 2.55-fold (95% CI:
1.74–3.72) higher urinary 2,5-DCP, MePb, EtPb, and PrPb levels,
respectively. Relative to non-Hispanic White participants, non-
Hispanic Black participants had 0.38-fold (95% CI: 0.27–0.51) lower
urinary BP-3 concentrations; non-Hispanic Other participants had
2.06-fold (95% CI: 1.42–2.99), 2.02-fold (95% CI: 1.46–2.80), and
2.01-fold (95% CI: 1.30–3.11) higher urinary 2,5-DCP, MePb, and
PrPb levels, respectively, but a 0.49-fold (95% CI: 0.37–0.65) lower
urinary BP-3 level.
The results were similar, but somewhat attenuated, when we

adjusted for the SVI in a sensitivity analysis of 2117 participants
with a geocoded home address (Supplementary Table 6) and
when we limited the analysis to urine specimens collected during
the second trimester (Supplementary Table 7). The results of the
leave-one-cohort-out analysis were mostly consistent with the
main findings (Supplementary Fig. 6). However, exclusion of The
Infant Development and Environment Study (TIDES) cohort
changed the direction of the effect estimates, with urinary BPA
concentrations similar between non-Hispanic Black and non-
Hispanic White participants and lower among Hispanic and non-
Hispanic Other participants than non-Hispanic White participants.
There were also increases in the magnitude of the association of
race/ethnic identity with BPF among Hispanic participants and
with BPS among Hispanic, non-Hispanic Black, and non-Hispanic
Other participants relative to non-Hispanic White participants
when excluding the New York University Child Health and
Environment Study (NYU-CHES) cohort.

Table 1. Distribution of demographic and socioeconomic
characteristics among pregnant ECHO study participants (n= 4006).

Characteristics No. (%)

Maternal racial/ethnic identity

Hispanic 1658 (41.4%)

Non-Hispanic White 1478 (36.9%)

Non-Hispanic Black 490 (12.2%)

Non-Hispanic Asian/Multiple/Other 362 (9.0%)

Missing 18 (0.4%)

Maternal educational attainment

<Bachelor’s degree 2020 (50.4%)

≥Bachelor’s degree 1874 (46.8%)

Missing 112 (2.8%)

Maternal age at assessment (years)

Mean (SD) 29.37 (5.69)

Median (IQR) 30 (25, 33)

Range 16 - 48

Missing <5

Maternal pre-pregnancy BMI (kg/m2)

Mean (SD) 26.64 (6.48)

Median (IQR) 25.1 (22.0, 22.9)

Range 13.2–82.0

Missing 307 (7.7%)

Gestational age at specimen collection (weeks)

Mean (SD) 20.1 (7.8)

Median (IQR) 20.0 (14.0, 26.0)

Range 0.01–40.00

Missing 0 (0%)

BMI body mass index, ECHO Environmental influences on Child Health
Outcomes, IQR interquartile range, SD standard deviation.
Includes individuals who have at least one urinary phenol or paraben
measurement. In accordance with ECHO’s publication and data use policy,
symbols < or > are used to display numbers where there exists a cell size
greater than 0 but less than 5, and there is a potential risk of re-identifying
participants. Cells with a small size and a few surrounding cells are
sufficiently suppressed to prevent back calculation of the exact numbers in
the cells with the small size.
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Associations between maternal educational level and
urinary EPs
Table 2 shows the associations between maternal educational
level and urinary EPs, adjusted for covariates, according to
maternal racial/ethnic identity. In all racial and ethnic groups,
participants who had not completed a bachelor’s degree had
lower urinary BP-3 than participants who had completed a
bachelor’s degree or more, although with statistical significance
only for Hispanic (0.68-fold; 95% CI: 0.55–0.84) and non-Hispanic
Other (0.44-fold; 95% CI: 0.25–0.77) participants following the
Bonferroni adjustment procedure. There was also a consistent
pattern of higher urinary BPS and 2,5-DCP among participants
who had not completed a bachelor’s degree in all racial and ethnic
identity groups, although without statistical significance. Supple-
mentary Table 8 shows a similar pattern of associations between
maternal educational level and gestational urinary BP-3, BPS, and
2,5-DCP concentrations in the overall sample.

DISCUSSION
In this investigation of 4006 pregnant ECHO participants, we
found that average urinary EP concentrations differed by self-
reported racial/ethnic identity. Non-Hispanic Black and Hispanic
participants had greater average urinary concentrations of 2,5-
DCP, the primary metabolite of paradichlorobenzene [4], than
non-Hispanic White participants. Paradichlorobenzene is used in
mothballs, fumigants, and room/toilet deodorizers, allowing the
chemical to be inhaled [5]. It is neurotoxic and weakly
antiestrogenic in rodents [41], and exposure has been associated
with estrogen-sensitive cancers [42]. Urinary MePb, EtPb, and PrPb
levels were also higher among non-Hispanic Black than non-
Hispanic White participants. These chemicals are weakly estro-
genic and used as preservatives in prepared foods and personal
care products, allowing them to be ingested and absorbed [8].
Higher gestational exposure to MePb was associated with greater
risks of adverse birth outcomes and attention-deficit hyperactivity

Fig. 2 Covariate-adjusted associations between self-reported racial and ethnic identity and urinary chemical concentrations (µg/L)
among pregnant ECHO participants. Effect estimates are ratios of geometric means and 95% confidence intervals from individual linear
mixed effect censored-response regression models of specific gravity/creatinine-corrected urinary phenol concentrations as outcomes and
maternal racial and ethnic identity categories as predictors (non-Hispanic White = reference category), a random intercept on pregnancy to
account for multiple urinary measurements and adjusted for maternal age (years), pre-pregnancy body mass index (kg/m2), educational level
(completed vs. did not complete bachelor’s degree), gestational age at biospecimen collection (weeks), season of biospecimen collection (fall
vs. winter vs. spring vs. summer), and ECHO study cohort (11 cohorts). Abbreviations: BPA bisphenol A, BPF bisphenol F, BPS bisphenol S,
ECHO Environmental Influences on Child Health Outcomes, Mult/Oth/Asian non-Hispanic multiple races, “Other,” and Asian.

Fig. 1 Distributions of natural log-transformed urinary chemical concentrations among pregnant ECHO participants by self-reported
racial and ethnic identity. Urinary phenol concentrations (µg/L) corrected for urinary specific gravity or urinary creatinine. Abbreviations:
ECHO Environmental influences on Child Health Outcomes, Mult/Oth/Asian non-Hispanic multiple races, “Other,” and Asian.
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disorder among offspring [43]. In contrast, average urinary
concentrations of BP-3, a UV-filtering chemical absorbed from
sunscreens and personal care products, were highest among non-
Hispanic White participants. BP-3 has been found to be estrogenic
in experimental models, and exposure was associated with
adverse reproductive outcomes in human studies [6]. However,
we found that the associations did not differ by educational
attainment, suggesting that factors other than educational
attainment, as a proxy for socioeconomic position, played an
important role in racial/ethnic differences. Differential exposure
may account in part for racial/ethnic differences in perinatal health
outcomes.

Comparison with previous studies
Pregnant people from across the U.S. with racial and ethnic
identities other than non-Hispanic White had higher urinary
concentrations of most measured EPs than their non-Hispanic
White counterparts. Our results are largely consistent with the
results of several previous studies of pregnant people that have
also reported racial and ethnic differences in urinary EPs among
smaller samples of the U.S. population from limited areas [20–24].
Biomonitoring studies have also described similar racial and ethnic
differences in urinary EPs among representative samples of the
general U.S. population [19, 44–46]. However, unlike the general
U.S. population samples that included people without pregnancy,
children, and seniors, our study focused on pregnant people.
Similar to our results, the 2009–2010 U.S. National Children’s

Study Vanguard Study (NCS) of 506 pregnant women (some of
whom were included in this analysis) showed higher urinary 2,5-

DCP levels among non-Hispanic Black than non-Hispanic White
participants [20]. Urinary 2,5-DCP levels were similarly lowest
among non-Hispanic White participants and those with the
highest educational level in the 2009–2014 Healthy Start study
of 446 pregnant women from Colorado (some of whom were
included in this analysis) [21]. African Americans, a non-Hispanic
Black group, had the highest urinary 2,4-DCP and 2,5-DCP levels in
the 2006–2008 LIFECODES study of 480 pregnant women from
Boston, Massachusetts [22]. These results are consistent with our
own findings and with those from a representative sample of U.S.
women from 1999–2014, for whom urinary concentrations of 2,4-
DCP and 2,5-DCP levels were higher among non-Hispanic Black
and Hispanic women than non-Hispanic White women [44].
Similar to the U.S. biomonitoring study, we did not find an
association between urinary 2,4-DCP and 2,5-DCP and educational
level [44].
In addition, our findings were consistent with results from a

2003–2004 study showing that U.S. non-Hispanic White partici-
pants had greater average urinary BP-3 than non-Hispanic Black
and Mexican American participants [19]. Pregnant non-Hispanic
White women had similarly higher urinary BP-3 concentrations
than other racial/ethnic groups in the NCS and Healthy Start
studies [20, 21], and BP-3 levels were positively correlated to
educational level in the Healthy Start and LIFECODES studies
[21, 22]. We also found higher BP-3 levels among pregnant people
with more education.
BPA is a plastic monomer used in polycarbonate plastics, epoxy

can linings, heat transfer papers, and other consumer goods [7].
BPA levels were similar across different racial/ethnic categories

Table 2. Associations between maternal education and urinary chemicals among pregnant ECHO participants by self-reported racial/ethnic identity.

Hispanic Ratio of
GMs

95% CI
low

95% CI
high

p-value Non-Hispanic
White

Ratio of
GMs

95% CI
low

95% CI
high

p-value

2,4-dichlorophenol 0.91 0.75 1.10 0.32 2,4-dichlorophenol 0.94 0.78 1.14 0.56

2,5-dichlorophenol 1.06 0.83 1.35 0.64 2,5-dichlorophenol 1.18 0.93 1.49 0.17

Benzophenone-3 0.68 0.55 0.84 <0.001 Benzophenone-3 0.73 0.55 0.97 0.03

Bisphenol A 0.99 0.88 1.12 0.90 Bisphenol A 1.16 0.95 1.43 0.14

Bisphenol F 0.98 0.77 1.23 0.83 Bisphenol F 0.99 0.71 1.36 0.94

Bisphenol S 1.16 1.01 1.33 0.04 Bisphenol S 1.12 0.90 1.40 0.32

Butyl Paraben 0.70 0.44 1.10 0.13 Butyl Paraben 1.23 0.73 2.07 0.45

Ethyl Paraben 0.55 0.35 0.87 0.01 Ethyl Paraben 0.83 0.51 1.35 0.46

Methyl Paraben 0.90 0.73 1.10 0.29 Methyl Paraben 1.13 0.86 1.50 0.38

Propyl Paraben 0.83 0.63 1.10 0.19 Propyl Paraben 0.99 0.69 1.42 0.94

Non-Hispanic
Black

Ratio of
GMs

95% CI
low

95% CI
high

p-value Non-Hispanic
Other

Ratio of
GMs

95% CI
low

95% CI
high

p-value

2,4-dichlorophenol 1.52 0.87 2.67 0.14 2,4-dichlorophenol 1.35 0.71 2.57 0.36

2,5-dichlorophenol 1.81 0.93 3.52 0.08 2,5-dichlorophenol 4.80 1.51 15.32 0.01

Benzophenone-3 0.45 0.23 0.87 0.02 Benzophenone-3 0.44 0.25 0.77 0.004

Bisphenol A 0.95 0.74 1.21 0.66 Bisphenol A 1.31 0.92 1.86 0.13

Bisphenol F 1.02 0.52 1.97 0.96 Bisphenol F 0.83 0.40 1.72 0.62

Bisphenol S 1.47 0.84 2.60 0.18 Bisphenol S 1.12 0.71 1.76 0.63

Butyl Paraben 0.57 0.20 1.58 0.28 Butyl Paraben 0.43 0.11 1.73 0.24

Ethyl Paraben 0.41 0.13 1.29 0.13 Ethyl Paraben 0.54 0.11 2.63 0.45

Methyl Paraben 0.53 0.28 1.00 0.05 Methyl Paraben 2.02 0.73 5.60 0.17

Propyl Paraben 0.70 0.33 1.51 0.37 Propyl Paraben 3.90 1.15 13.22 0.03

CI confidence interval, ECHO Environmental influences on Child Health Outcomes, GM geometric mean.
Effect estimates are ratios of geometric means and 95% confidence intervals from individual linear mixed effect censored-response regression models of
specific gravity/creatinine-corrected urinary phenol and paraben concentrations as outcomes and maternal educational level (<bachelor’s degree vs.
≥bachelor’s degree), a random intercept on pregnancy to account for multiple urine measurements, and adjusted for maternal age (years), pre-pregnancy
body mass index (kg/m2), gestational age at biospecimen collection (weeks), season of biospecimen collection (fall vs. winter vs. spring vs. summer), and study
cohort (11 cohorts). Bold font indicates statistically significant result after correction for multiple comparisons with p < 0.005 (i.e., α = 0.05/10 tests).
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among U.S. women in 1999–2014 [44]. In contrast, urinary levels of
BPS, a BPA-replacement chemical, were highest among non-
Hispanic Black women, and urinary levels of BPF, another BPA
replacement, were highest among non-Hispanic White women
from 1999–2016; these differences could not be attributed to
income as an indicator of socioeconomic position [44]. Urinary BPS
and BPA were similarly highest among non-Hispanic Black U.S.
adults from 2007–2016, but there was no significant difference in
BPF; concentrations were greatest among those with the lowest
education [45]. In contrast, urinary BPA levels were similar among
233 non-Hispanic White, Hispanic, and Other (including Asian,
Black, and multiracial) pregnant California women enrolled in the
Markers of Autism Risk in Babies–Learning Early Signs (MARBLES)
study from 2007–2014, although those with less education had
higher urinary BPA levels [23]. We did not find a statistically
significant difference in urinary BPA, BPS, or BPF levels between
racial/ethnic categories after the Bonferroni adjustment, although
our results suggested higher urinary BPA among non-Hispanic
Black compared to non-Hispanic White participants. We also did
not find associations of BPA, BPF, or BPS with educational level.
The differences between our results and those from U.S.
biomonitoring data may in part reflect higher intraindividual
variabilities in prior studies based on a single urine specimen [47]
and different time-activity exposure patterns between pregnant
and non-pregnant populations [48].
Our results were similar to those reported in a previous analysis of

the Healthy Start Study, in which non-Hispanic Black participants
and participants with other racial/ethnic identities had the highest
urinary MePb, EtPb, and PrPb levels and non-Hispanic Black
participants had the lowest urinary BuPb levels [21]. Higher
education was related to higher urinary EtPb and PrPb levels in
Healthy Start. Similarly, urinary MePb and PrPb levels were greatest
among African American participants, whereas BuPb levels were
greatest among White participants in the LIFECODES study [22]. In
the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a study
of 467 pregnant women from Boston, Massachusetts, maternal
plasma MePb and PrPb levels were lowest among non-Hispanic
White participants, similar to our findings [24]. Likewise, urinary
MePb, EtPb, and PrPb were higher among Hispanic participants and
those with other racial/ethnic identities than among White
participants in the MARBLES study, and PrPb levels were greater
among those with less education [23]. In parallel to our findings
among pregnant people, urinary MePb and PrPb concentrations
were higher among U.S. non-Hispanic Black, Mexican American, and
Other Hispanic participants than among non-Hispanic White
participants in 1999–2014, and the differences could not be
attributed to socioeconomic position [44].
The results of the current study in a large sample of pregnant

people underscore the widespread nature of racial and ethnic
differences in urinary EP concentrations, despite decreases in
exposure to most EPs in all racial/ethnic groups over time [46].

Drivers of racial and ethnic differences in urinary EP
concentrations
We found differences in urinary EP concentrations between racial/
ethnic groups, primarily reflecting higher urinary concentrations
among non-Hispanic Black and Hispanic people than among non-
Hispanic White people. Yet, we also found that most urinary EPs
were similar for participants with different educational levels.
These results suggest that the racial/ethnic differences in urinary
EPs were similar among participants with different educational
levels, which act as a surrogate for socioeconomic position.
Personal care products intended for application to the skin, hair,
and nails, as well as deodorizers, fragrances, perfumes, and
cleansers, are an important source of exposure to parabens and
benzophenones [9, 10, 49, 50]. Use of some personal care
products differs among White and non-White women [51–54].
While preference and product availability are important, the

imposition of Eurocentric beauty standards appears to be a key
driver of exposure disparities in non-White populations
[9, 51, 55, 56]. Use of products marketed to non-White populations
to promote White beauty standards, such as hair relaxers and
related haircare products, skin lighteners, and douche/vaginal
wash products, can lead to higher EP exposures [12, 57]. Greater
use of ethno-targeted beauty products has been associated with
increased reproductive health risks [58–60]. Similarly, differences
in consumption of processed, packaged, and canned foods leads
to different EP exposures [45, 61, 62], and different patterns of
product consumption during pregnancy may contribute to the
exposure difference [63]. Unfortunately, product selection may be
constrained by availability and cost [64], in addition to preference,
so the success of individual actions to reduce exposure is likely to
be limited; policy-level initiatives are necessary to intervene
effectively on the exposure disparity [65]. Resolving the racial and
ethnic difference in prenatal EP exposure will require intensive
study of the exposure sources to inform greater regulatory
attention, and investigation of racial and ethnic differences in
perinatal outcomes and child health that can be attributed in part
to the different levels of exposure.

Strengths and limitations
Our sample size of 4006 pregnant people with 7854 urine
specimens provided statistical power to detect important
differences in urinary EPs among pregnant people with different
self-reported racial/ethnic identities. The results of our sensitivity
analyses suggested that neighborhood-level confounding was
unlikely to bias the results. However, the limited number of
participants who identified as non-Hispanic Asian, Hawaiian,
American Indian, Alaskan Native, multiple races, and as other
racial and ethnic identities precluded analyses as separate groups.
A future investigation with oversampling of pregnant people
having these racial and ethnic identities is necessary to
characterize EP exposure disparities. There were modest differ-
ences in effect estimates for urinary BPA, BPF, and BPS when we
excluded the TIDES and NYU CHES studies, but most results were
also robust to a leave-one-cohort-out analysis.
We measured multiple urinary EPs, including the newer BPA-

analog compounds BPF and BPS. However, urinary EPs have short
half-lives in vivo. Intraclass correlations ranged from 0.25 for BPS
to 0.95 for EtPb in repeated urinary specimens collected at 2 week
intervals in Healthy Start [21], suggesting that individual measures
may not represent exposure across gestation for some chemicals.
Still, we included multiple urinary measurements in the regression
models for many participants. The results were also mostly similar
in a sensitivity analysis limited to second-trimester urinary
specimens, which may in part reflect higher concentrations of
some EPs at delivery (24 samples collected at delivery) [66].
Furthermore, there were a large number of samples with BPF
values lower than the LOD. We implemented a censored linear
mixed effects model to accommodate the uncertainty due to
these values. We also included cohort as a fixed effect in
regression models to adjust for differences between ECHO
cohorts, including using different laboratories to measure EPs [67].

CONCLUSIONS
Our results underscore the disproportionately high levels of
exposure to EPs among pregnant racial and ethnic minorities in
the U.S. Thus, studies of racial/ethnic differences in perinatal health
outcomes should account for differences in chemical exposure.

DATA AVAILABILITY
Select de-identified data from the ECHO Program are available through NICHD’s Data
and Specimen Hub (DASH). Information on study data not available on DASH, such as
some Indigenous datasets, can be found on the ECHO study DASH webpage.
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