Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced vascular aging and outcomes after acute ischemic stroke: a systematic review and meta-analysis

Abstract

Pulse wave velocity (PWV) is as a reliable marker of arterial stiffness and vascular aging, surpassing traditional risk factors in predicting detrimental cardiovascular events. The present meta-analysis aims to investigate PWV thresholds and assess its prognostic value in outcomes of acute ischemic stroke (AIS). A search was conducted in PubMed, Cochrane, Web of Science, and Scopus for studies published up to January 2024, focusing on patients admitted with AIS, wherein arterial stiffness was assessed through PWV measurements during hospitalization. Identified studies reported PWV values in individuals with both favorable and unfavorable outcomes at the end of follow-up. Initially, 35 eligible studies provided data for weighted mean baPWV (11,953 AIS patients) and cfPWV (2,197 AIS patients) calculations. The average age was 67 years, with approximately 60% male, 67% hypertensive, 30% diabetic and 30% smoker participants. The weighted mean systolic blood pressure was approximately 150 mmHg. In AIS patients, the mean PWV was 10 m/s for standard cfPWV and 20 m/s for baPWV. Nine cohort studies (6,006 AIS patients) were included in the quantitative analysis of clinical outcomes. Higher PWV levels were associated with poorer functional outcomes (2.3 m/s higher, 95%CI:1.2–3.4, p < 0.001; I2 = 87.4%). AIS patients with arterial stiffness/vascular aging (higher PWV) had approximately 46.2% increased risk of poor functional outcome, 12.7% higher risk of mortality, 13.9% greater risk of major adverse cardiovascular events, and 13.9% greater risk of stroke recurrence over the long term compared to those without arterial stiffness. Advanced vascular aging, as indicated by PWV, significantly predicts adverse outcomes in AIS patients. Integrating the assessment of vascular aging into clinical practice can improve risk perception in these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Weighted mean and standard deviation of PWV.
Fig. 3: Forest plots of meta-analysis for clinical outcomes.

Similar content being viewed by others

References

  1. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3–10.

    Article  CAS  PubMed  Google Scholar 

  2. Boutouyrie P, Bruno RM. The clinical significance and application of vascular stiffness measurements. Am J Hypertens. 2019;32:4–11.

    Article  PubMed  Google Scholar 

  3. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  4. Climie RE, Alastruey J, Mayer CC, Schwarz A, Laucyte-Cibulskiene A, Voicehovska J, et al. Vascular ageing: moving from bench towards bedside. Eur J Prev Cardiol. 2023;30:1101–17.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Savopoulos C, Daios S, Kaiafa G. Vascular aging and stroke. Curr Med Chem. 2022;29:5476–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kakaletsis N, Kotsis V, Protogerou AD, Vemmos K, Korompoki E, Kollias A, et al. Early vascular aging in acute ischemic stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2024;33:107800.

    Article  CAS  PubMed  Google Scholar 

  7. Laurent S, Boutouyrie P. Arterial stiffness and hypertension in the elderly. Front Cardiovasc Med. 2020;7:544302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    Article  PubMed  Google Scholar 

  9. Lu Y, Pechlaner R, Cai J, Yuan H, Huang Z, Yang G, et al. Trajectories of age-related arterial stiffness in Chinese men and women. J Am Coll Cardiol. 2020;75:870–80.

    Article  PubMed  Google Scholar 

  10. Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023;41:1874–2071.

  11. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  PubMed  Google Scholar 

  12. Cardoso CRL, Salles GF. Prognostic value of changes in aortic stiffness for cardiovascular outcomes and mortality in resistant hypertension: a cohort study. Hypertension. 2022;79:447–56.

    Article  CAS  PubMed  Google Scholar 

  13. Dorans KS, He H, Chen J, Dobre M, Go AS, Hamm LL, et al. Change in ankle-brachial index and mortality among individuals with chronic kidney disease: findings from the chronic renal insufficiency cohort study. Nephrol Dial Transplant. 2021;36:2224–31.

    Article  PubMed  Google Scholar 

  14. Ntaios G, Michel P. Temporal distribution and magnitude of the vulnerability period around stroke depend on stroke subtype. Cerebrovasc Dis. 2011;32:246–53.

    Article  CAS  PubMed  Google Scholar 

  15. Strambo D, Zachariadis A, Lambrou D, Schwarz G, Sirimarco G, Aarnio K, et al. A score to predict one-year risk of recurrence after acute ischemic stroke. Int J Stroke. 2021;16:602–12.

    Article  PubMed  Google Scholar 

  16. Ntaios G, Papavasileiou V, Makaritsis K, Milionis H, Michel P, Vemmos K. Association of ischaemic stroke subtype with long-term cardiovascular events. Eur J Neurol. 2014;21:1108–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y. Residual recurrence risk of ischaemic cerebrovascular events: concept, classification and implications. Stroke Vasc Neurol. 2021;6:155–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). www.training.cochrane.org/handbook: Cochrane; 2023.

  19. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Van Bortel LM, De Backer T, Segers P. Standardization of arterial stiffness measurements make them ready for use in clinical practice. Am J Hypertens. 2016;29:1234–6.

    Article  PubMed  Google Scholar 

  22. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:1237–63.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wells G, B Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  24. Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in europe: a systematic review and meta-analysis. PLoS One. 2016;11:e0147601.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Saji N, Murotani K, Shimizu H, Uehara T, Kita Y, Toba K, et al. Increased pulse wave velocity in patients with acute lacunar infarction doubled the risk of future ischemic stroke. Hypertens Res. 2017;40:371–5.

    Article  PubMed  Google Scholar 

  26. Tziomalos K, Bouziana SD, Spanou M, Giampatzis V, Papadopoulou M, Kazantzidou P, et al. Increased augmentation index is paradoxically associated with lower in-hospital mortality in patients with acute ischemic stroke. Atherosclerosis. 2014;236:150–3.

    Article  CAS  PubMed  Google Scholar 

  27. Rojek A, Gąsecki D, Fijałkowski M, Kowalczyk K, Kwarciany M, Wolf J, et al. Left ventricular ejection fraction and aortic stiffness are independent predictors of neurological outcome in acute ischemic stroke. J Hypertens. 2016;34:2441–8.

    Article  CAS  PubMed  Google Scholar 

  28. Samara S, Vemmou A, Kyrkou A, Papamichael C, Korompoki E, Ntaios G, et al. Prediction of long-term outcomes by arterial stiffness and pressure wave reflections in patients with acute stroke: the Athens Stroke Registry. J Hypertens. 2022;40:2192–9.

    Article  CAS  PubMed  Google Scholar 

  29. Lee YB, Park JH, Kim E, Kang CK, Park HM. Arterial stiffness and functional outcome in acute ischemic stroke. J Cerebrovasc Endovasc Neurosurg. 2014;16:11–9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kim J, Song TJ, Kim EH, Lee KJ, Lee HS, Nam CM, et al. Brachial-ankle pulse wave velocity for predicting functional outcome in acute stroke. Stroke. 2014;45:2305–10.

    Article  PubMed  Google Scholar 

  31. Ishizuka KH, T Shimizu S. Brachial-ankle pulse wave velocity is associated with 3-month functional prognosis after ischemic stroke. Atherosclerosis. 2016;255:1–5.

    Article  CAS  PubMed  Google Scholar 

  32. Han M, Kim YD, Lee I, Lee H, Heo J, Lee HS, et al. Low toe-brachial index is associated with stroke outcome despite normal ankle-brachial index. Front Neurol. 2021;12:754258.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ahn KT, Jeong JO, Jin SA, Kim M, Oh JK, Choi UL, et al. Brachial-ankle PWV for predicting clinical outcomes in patients with acute stroke. Blood Press. 2017;26:204–10.

    Article  PubMed  Google Scholar 

  34. Seo WK, Lee JM, Park MH, Park KW, Lee DH. Cerebral microbleeds are independently associated with arterial stiffness in stroke patients. Cerebrovasc Dis. 2008;26:618–23.

    Article  PubMed  Google Scholar 

  35. Song TJ, Kim J, Kim YD, Nam HS, Lee HS, Nam CM, et al. The distribution of cerebral microbleeds determines their association with arterial stiffness in non-cardioembolic acute stroke patients. Eur J Neurol. 2014;21:463–9.

    Article  CAS  PubMed  Google Scholar 

  36. De Silva DA, Woon FP, Manzano JJ, Liu EY, Chang HM, Chen C, et al. The relationship between aortic stiffness and changes in retinal microvessels among Asian ischemic stroke patients. J Hum Hypertens. 2012;26:716–22.

    Article  PubMed  Google Scholar 

  37. Kwarciany M, Gąsecki D, Kowalczyk K, Rojek A, Laurent S, Boutouyrie P, et al. Acute hypertensive response in ischemic stroke is associated with increased aortic stiffness. Atherosclerosis. 2016;251:1–5.

    Article  CAS  PubMed  Google Scholar 

  38. Tuttolomondo A, Di Raimondo D, Di Sciacca R, Pecoraro R, Arnao V, Buttà C, et al. Arterial stiffness and ischemic stroke in subjects with and without metabolic syndrome. Atherosclerosis. 2012;225:216–9.

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Tang J, Zhang Y, Zhang J, Tan Z, Shi S. Association between ankle brachial index, brachial-ankle pulse wave velocity, and mild cognitive impairment in patients with acute lacunar infarction. Eur Neurol. 2020;83:147–53.

    Article  PubMed  Google Scholar 

  40. De Silva DA, Woon FP, Gan HY, Chen CP, Chang HM, Koh TH, et al. Arterial stiffness is associated with intracranial large artery disease among ethnic Chinese and South Asian ischemic stroke patients. J Hypertens. 2009;27:1453–8.

    Article  PubMed  Google Scholar 

  41. Li X, Du H, Gao Q, Chen J, Chen X. Brachial-ankle pulse wave velocity is associated with intracranial artery calcification in acute stroke patients. Clin Neurol Neurosurg. 2023;233:107918.

    Article  PubMed  Google Scholar 

  42. Chang YM, Lee TL, Su HC, Chien CY, Lin TY, Lin SH, et al. The association between ankle-brachial index/pulse wave velocity and cerebral large and small vessel diseases in stroke patients. Diagnostics (Basel). 2023;13:1455.

    Article  PubMed  Google Scholar 

  43. De Silva DA, Woon FP, Gan HY, Cameron J, Kingwell B, Koh TH, et al. Arterial stiffness, metabolic syndrome and inflammation amongst Asian ischaemic stroke patients. Eur J Neurol. 2008;15:872–5.

    Article  PubMed  Google Scholar 

  44. Karaszewski B, Kwarciany M, Gąsecki D. Reply to: “Arterial stiffness, central blood pressures, wave reflections, and acute hypertensive response in stroke”. Atherosclerosis. 2016;252:197–8.

    Article  CAS  PubMed  Google Scholar 

  45. Spronck B, Terentes-Printzios D, Avolio AP, Boutouyrie P, Guala A, Jerončić A, et al. 2024 recommendations for validation of noninvasive arterial pulse wave velocity measurement devices. Hypertension. 2024;81:183–92.

    Article  CAS  PubMed  Google Scholar 

  46. Soureti A, Hurling R, Murray P, van Mechelen W, Cobain M. Evaluation of a cardiovascular disease risk assessment tool for the promotion of healthier lifestyles. Eur J Cardiovasc Prev Rehabil. 2010;17:519–23.

    Article  PubMed  Google Scholar 

  47. Lin B, Zhang Z, Mei Y, Wang C, Xu H, Liu L, et al. Cumulative risk of stroke recurrence over the last 10 years: a systematic review and meta-analysis. Neurol Sci. 2021;42:61–71.

    Article  PubMed  Google Scholar 

  48. Chen Y, Wright N, Guo Y, Turnbull I, Kartsonaki C, Yang L, et al. Mortality and recurrent vascular events after first incident stroke: a 9-year community-based study of 0·5 million Chinese adults. Lancet Glob Health. 2020;8:e580–90.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Xu J, Zhang X, Jin A, Pan Y, Li Z, Meng X, et al. Trends and risk factors associated with stroke recurrence in China, 2007–2018. JAMA Netw Open. 2022;5:e2216341.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Boulanger M, Béjot Y, Rothwell PM, Touzé E. Long-term risk of myocardial infarction compared to recurrent stroke after transient ischemic attack and ischemic stroke: systematic review and meta-analysis. J Am Heart Assoc. 2018;7:e007267.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Striepe K, Jumar A, Ott C, Karg MV, Schneider MP, Kannenkeril D, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136:1167–9.

    Article  CAS  PubMed  Google Scholar 

  52. Batzias K, Antonopoulos AS, Oikonomou E, Siasos G, Bletsa E, Stampouloglou PK, et al. Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: a systematic review and meta-analysis. J Diabetes Res. 2018;2018:1232583.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Adamou A, Barkas F, Milionis HJ, Ntaios G. Glucagon-like receptor-1 agonists and stroke: a systematic review and meta-analysis of cardiovascular outcome trials. Int J Stroke. 2024;19:876–87.

  54. Milionis H, Ntaios G, Korompoki E, Vemmos K, Michel P. Statin-based therapy for primary and secondary prevention of ischemic stroke: A meta-analysis and critical overview. Int J Stroke. 2020;15:377–84.

    Article  PubMed  Google Scholar 

  55. Sagris D, Ntaios G, Georgiopoulos G, Pateras K, Milionis H. Proprotein convertase subtilisin-kexin type 9 inhibitors and stroke prevention: a meta-analysis. Eur J Intern Med. 2021;85:130–2.

    Article  CAS  PubMed  Google Scholar 

  56. Sagris D, Ntaios G, Milionis H. Beyond antithrombotics: recent advances in pharmacological risk factor management for secondary stroke prevention. J Neurol Neurosurg Psychiatry. 2024;95:264–72.

    Article  PubMed  Google Scholar 

  57. Ntaios G, Baumgartner H, Doehner W, Donal E, Edvardsen T, Healey JS, et al. Embolic strokes of undetermined source: a clinical consensus statement of the ESC Council on Stroke, the European Association of Cardiovascular Imaging and the European Heart Rhythm Association of the ESC. Eur Heart J. 2024;45:1701–15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors significantly contributed to the manuscript and approved the final version for publication. NK, AP, VK, and CS designed the study. NK, AP, VK contributed to data acquisition and performed the statistical analysis. NK, AP, KV, EK, AK, HM, and GN contributed to the interpretation of data. NK wrote the first manuscript draft. All authors edited the final manuscript draft. NK is the guarantor of this work.

Corresponding author

Correspondence to Nikolaos Kakaletsis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakaletsis, N., Protogerou, A.D., Kotsis, V. et al. Advanced vascular aging and outcomes after acute ischemic stroke: a systematic review and meta-analysis. J Hum Hypertens 38, 676–686 (2024). https://doi.org/10.1038/s41371-024-00961-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-024-00961-y

This article is cited by

Search

Quick links