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Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths worldwide. Traditional RNA sequencing data
fails to detect the exact cellular and molecular changes in tumor cells as they make up only a small proportion of tumor
tissue. 10× genomics single-cell RNA sequencing (10× scRNA-seq) and gene expression data of LUAD patients was
obtained from the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, ArrayExpress, TCGA, and GEO
databases. Differentially expressed genes (DEGs) were identified in LUAD and alveolar cells (DEGs-scRNA-cancer_cell),
tumor- and normal tissue-derived cells (DEGs-scRNA-sample), and normal and LUAD patients (DEGs-Bulk). Flow
cytometry and qRT-PCR were performed to validate the significantly differentially expressed ligand–receptor pairs. We
selected 159,219 cells and 594 samples in the scRNA-seq data and traditional RNA sequencing, respectively. A total of 1042
DEGs-scRNA-cancer_cell, 788 DEGs-scRNA-sample, and 2510 DEGs-Bulk were identified in this study. We also
identified 57 DEGs that were only detected in DEGs-scRNA-cancer_cell (only-DEGs-scRNA-cancer_cell). To explore the
relationship between only-DEGs-scRNA-cancer_cell and survival in LUAD, 14 and 22 only-DEGs-scRNA-cancer_cell,
which were closely related with survival in TCGA and GEO cohorts were identified. Functional enrichment analyses showed
these DEGs-scRNA-cancer_cells were mainly related to cell proliferation and immunoregulation. Our study detected and
compared DEGs at different levels and revealed genes that may regulate tumor development. Our results provide a potential
new protocol to determine the contribution of DEGs to cancer progression and to help identify potential therapeutic targets.

Introduction

Lung cancer is the leading cause of cancer-related deaths
worldwide and is responsible for more than 1,700,000 new
cases every year [1, 2]. Lung adenocarcinoma (LUAD),

which accounts for the majority of all lung cancers, is one of
the most important subtypes of lung cancer. In recent
decades, most studies on the expression profiles of LUAD
patients have been based on traditional RNA-sequencing
(RNA-seq) data and have improved our understanding of
the occurrence and development of tumors. However, tra-
ditional RNA-seq technology is mainly focused on the
“average” expression of all cells in a sample; in addition to
tumor cells, tumor tissues also contain a large number of
other cell types, such as macrophages and epithelial cells
[3, 4]. Therefore, traditional RNA-seq technology may fail
to detect the exact cellular and molecular changes in tumor
cells. Many genes that may be differentially expressed
and play a significant role in LUAD cannot be identified
by traditional RNA-seq as abnormalities could be
masked by the gene expression of other cell types. Recently,
single-cell RNA-seq as an innovative technology has
been used to investigate the transcriptome of different cell
types [5].
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In this study, both traditional RNA-seq and 10× scRNA-
seq data of LUAD patients were used to explore genes that
exhibited significant differences and functions in tumor
cells but were not detected in traditional RNA technology.
We believe our results will improve our understanding of
cellular and molecular differences between LUAD and
nonmalignant tissue and provide tumor markers as well as
potential therapeutic targets.

Materials and methods

Datasets

Nine LUAD patients from our hospital were included in
scRNA-seq analyses. Twenty normal and LUAD samples
were selected for flow cytometry and quantitative real-time
polymerase chain reaction (qRT-PCR) analyses. We also
downloaded 10× scRNA-seq data from the ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress) with acces-
sion numbers E-MTAB-6149 and E-MTAB-6653, respec-
tively (squamous and other lung cancer subtypes were
excluded in our study). Traditional RNA-seq data of LUAD
was collected from TCGA (https://tcgadata.nci.nih.gov/)
and Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) (GSE30219, GSE31210, GES3141,
GSE37745, GSE50081, and GSE68465).

Preparation of single-cell suspensions

Tumor and nonmalignant samples were divided into single-
cell suspensions by combining mechanical dissociation with
enzymatic degradation of the extracellular matrix. Accord-
ing to the manufacturer’s instructions, samples were enzy-
matically digested using a Tumor Dissociation Kit (Miltenyi
Biotec, Gladbach, Germany). Briefly, tissues were cut into
small pieces, which were mixed with 200 µL enzyme H, 25
µL enzyme A, 100 µL enzyme R, and 4.7 mL Dulbecco’s
Modified Essential Medium in MACS C Tube (130-094-
392, Miltenyi Biotec). In the mechanical dissociation steps,
we used the gentle MACS™ Dissociator (130-093-235,
Miltenyi Biotec) three times and the samples were incu-
bated for 30 min at 37 °C at each dissociation step interval.
To remove large particles, erythrocytes, and dead cells, a
filter (40 μm), Red Blood Cell Lysis Solution (10×) (Sigma-
Aldrich, St. Louis, MO, USA), and Dead Cell Removal Kit
(Miltenyi Biotec) were applied, respectively.

Single-cell RNA seq

We prepared the single-cell RNA-seq libraries using the
Chromium Single Cell 3′ Reagent kit (version 2) (10×

Genomics, Pleasanton, CA, USA). Single-cell suspensions
were loaded on the Chromium Single Cell Controller
Instrument (10× Genomics) to generate single-cell gel beads
in emulsions. Then, reverse transcription reactions used
barcoded full-length cDNA followed by the disruption of
emulsions using the recovery agent. To clean up cDNA,
DynaBeadsMyone Silane Beads (Thermo Fisher Scientific,
Waltham, MA, USA) were used. Subsequently, the ampli-
fied cDNA was fragmented, end-repaired, A-tailed, index
adapter ligated, and library amplified. Libraries were
sequenced on the Illumina-sequencing platform (HiSeq X
Ten; Illumina, San Diego, CA, USA) and 150 bp paired-end
reads were generated.

Single-cell RNA-seq data preprocessing

We used The Cell Ranger software pipeline (version 3.0.0)
to demultiplex cellular barcodes and map reads to the
genome. STAR aligner was applied to generate normalized
aggregate data across samples and obtain a matrix of gene
counts versus cells.

CNV estimation

To estimate the initial copy number variations (CNVs) in
each cell cluster, we used R package “inferCNV” to count
the CNVs [6]. The input file is a matrix of the expression
level of each cells without normalization, and we used cells
except “Alveolar cluster” and “Cancer cluster” as back-
ground to calculated the CNVs score.”

Statistical analysis

10× scRNA-seq data analysis

The 10× scRNA-seq data analyses performed in R ver-
sion 3.6.1 were as follows: (1) Seurat R package [7] was
used to convert 10× scRNA-seq data as a Seurat object
and the “FindVariableFeatures” function was used to
select the top 2000 highly variable genes after quality
control; (2) principal component analysis (PCA) was
performed based on the 2000 genes to analyze the 10×
scRNA-seq data; (3) Harmony R package [8] was used to
integrate single-cell data and function “RunHarmony”
was applied in a Seurat object to integrated the scRNA-
seq from different dataset; (4) after integrating single-cell
data, uniform manifold approximation and projection
(UMAP) were applied to explore the 10× scRNA-seq
data; and (5) SingleR package [9], CellMarker dataset
[10], and previous studies were applied to recognize the
different cell types.
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Identification of differentially expressed genes
(DEGs)

After identifying the cell types in 10× scRNA-seq, R
package MAST [11] was used to identify DEGs between
LUAD and alveolar cells (DEGs-scRNA-cancer_cell). In
addition, DEGs between the tumor- and normal tissue-
derived cells (DEGs-scRNA-sample) were determined
using the edgeR package in R. To detect DEGs between
normal and LUAD patients (DEGs-Bulk), we also per-
formed differential expression analysis of TCGA data using
the edgeR package. Moreover, to compare DEGs-scRNA-
cancer_cell, DEGs-scRNA-sample, and DEGs-Bulk, equal
numbers of genes were included in the DEG analyses. The
statistical threshold for significance was a false discovery
rate (FDR) <0.05 and fold change >1.5.

Functional enrichment analyses

To explore differential activities of pathways between cells
derived from LUAD tumor or nonmalignant tissue, gene set
variation analysis (GSVA) was performed using the
GSEABase package [12]. A described curated database was
also used to evaluate metabolic pathway activities [13]. The
GSVA package [14] was applied to assign pathway activity
scores to each cell type.

To investigate the potential molecular mechanisms of the
immune-related genes, a comprehensive immune-related
gene set was obtained from the Immunology Database and
Analysis Portal (ImmPort) database (https://immport.niaid.
nih.gov) [15]. This was used to identify immune genes that
were differentially expressed between LUAD tumor cell
and alveolar cell clusters. In addition, gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were performed by Metascape (http://
metascape.Org) [16]. A significant difference in GO or
KEGG pathways was defined as P < 0.01 and number of
enriched genes >3.

Survival statistical analysis

Survival statistical analyses were performed in IBM SPSS
statistics software, version 22.0 (IBM, Inc., Armonk, NY,
USA) and R version 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria). Kaplan–Meier and log-rank
tests were used to construct and compare survival curves. To
confirm whether expression of the selected gene was asso-
ciated with poor survival, patients with complete follow-up
records in TCGA and the GEO database were selected. We
split the patients into a high-expression group (>median
expression level across all samples) and a low expression
group (≤median expression level across all samples). A sig-
nificant difference of survival analysis was defined as P < 0.05.

Validation

To perform flow cytometry, we used phosphate-buffered
saline with 3% fetal bovine serum and 20 μg/mL human
IgG (Sigma-Aldrich) to block nonspecific antibody binding
for 15 min. Then, cells were incubated with
allophycocyanin-conjugated mouse anti-human EPCAM (5
µL/106 cells; cat. no.: 566658, BD Biosciences, San Jose,
CA, USA), BV421-conjugated mouse anti-human CD45 (5
µL/106 cells; cat. no.: 304022, BioLegend, San Diego, CA,
USA), or PE-conjugated mouse anti-human FOLR1 (10 µL/
106 cells; cat. no.: FAB5646P, R&D Systems, Minneapolis,
MN, USA) for 30 min on ice. To quantitate and isolate
stained cells, Fortessa analyzer (BD Biosciences) and
FACSAria II (BD Biosciences) were applied in our study,
and FlowJo software (TreeStar, Woodburn, OR, USA) was
used to generate the flow described above. In qRT-PCR
analyses, sorted cells were subjected to RNA extraction and
reverse transcription using a kit (Takara, Kusatsu, Japan)
prior to the experiment.

Results

scRNA-seq and cell typing of nonmalignant and
LUAD lung samples

In 10× scRNA-seq data analysis, after quality filtering, as
shown in Supplementary Fig. 1, before we integrated the
scRNA-seq from different dataset, cells mainly clustered by
dataset, after integration, cells were mixed together, which
suggested 159,219 cells derived from three databases were
well integrated. Of these, 50,845 (31.9%) cells were from
the E-MTAB-6149 database, 36,143 (22.7%) cells were
from the E-MTAB-6653 database, and 72,231 (45.4%) cells
were from our department (Supplementary Fig. 1). As
shown in Fig. 1a, 122,082 cells (76.7%) originated from 18
malignant lung tissue samples and 37,137 (23.3%) origi-
nated from seven normal lung tissue samples (Supplemen-
tary Tables 1 and 2). After applying PCA and uniform
manifold approximation and projection analysis on highly
variable genes (n= 2000) expressed across all 159,219
cells, eight distinct groups of cells were identified Fig. 1b.
We assigned these cell groups to known cell types based on
expression of the following known markers: CD3D, TRAC,
TRBC2 (T cells), C1QB, LYZ, CD68 (myeloid cells),
CLDN5, FCN3, RAMP2 (endothelial cells), C1R,
COL1A1, DCN (fibroblasts), CPA3, TPSAB1 (mast cells),
TPSB2, CD79A, IGHG3, and IGKC (B cells) [9, 17, 18]. In
addition, to better identify the malignant cells and normal
lung cells, we first we mapped the expression of six marker
genes (EPCAM, MDK, and SOX4 for cancer cells, and
EPCAM, AGR3, FOLR1, and SFTPD for normal epithelial
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cells) to distinguish the two types of cells in our study. As
Fig. 2 shows, the expression of EPCAM, MDK, and SOX4
is elevated in cancer cell cluster, while the expression of
EPCAM, AGR3, FOLR1, and SFTPD is elevated in normal
epithelial cells cluster. Next, according to the origin of cells,
we noticed that cells which both had high expression levels
of normal epithelial marker genes and derived from normal
tissues were mainly enriched in “Alveolar cluster”, which
suggested that the “Alveolar cluster” may be normal lung
cells. In addition, previous studied had demonstrated that
compared with normal cells, tumor cells had higher CNV
levels. Therefore, to further validate the malignant cells, we
estimated the CNV in “Cancer cluster” and “Alveolar
cluster” respectively. Our results revealed that compared
with “Alveolar cluster”, the cluster which we identified as
malignant cells exhibited remarkably higher CNV levels,
suggesting the reasonable cell annotation in our study
(Supplementary Fig. 2). Detailed information of the marker
genes for each cell type is shown in Fig. 2 and Supple-
mentary Fig. 3.

To better characterize the heterogeneity of cancer cells,
we regrouped these cancer cells and results revealed the
cancer cells were reclustered to three subclusters

(Supplementary Fig. 4). Next we attempted to identify the
marker genes for each subcluster; furthermore, to investi-
gate the biological functions of each cluster, enrichment
analyses were also performed in our study. As shown in
Supplementary Fig. 5, Subcancer1 were more related to the
cell metabolism and cell metabolism, while Subcancer2 and
Subcancer3 were more closely to cell migration and the
immune response respectively. Taken together, our results
revealed the huge heterogeneity in tumor cells.

Next we focused on the DEGs-scRNA analyses. A total
of 13,749 genes, present in both 10× scRNA-seq data and
traditional RNA-seq data, were selected for DEG analyses.
In DEGs-scRNA-cancer_cell analyses, 32,960 cells (18,248
LUAD and 14,712 alveolar cells) were included in our
study. Ultimately, 1042 DEGs-scRNA-cancer_cell were
identified between LUAD and alveolar cells, and 808
upregulated and 234 downregulated genes in the cancer
group were identified (Supplementary Table 3). Moreover,
compared with nonmalignant and malignant tissue-derived
cells, 788 DEGs-scRNA-sample (72 upregulated and 716
downregulated genes) were detected in this study (Supple-
mentary Table 3).

Identification of DEGs in traditional RNA-seq

Based on the TCGA database, we obtained 535 tumor and
59 normal samples in our DEGs-Bulk analysis. The DEGs-
Bulk were selected with strict criteria of fold change >1.5
and FDR < 0.05. A total of 2510 genes were identified:
1266 and 1244 were significantly upregulated and down-
regulated, respectively, in the LUAD samples (Supple-
mentary Table 3).

Compared DEGs among DEGs-scRNA-cancer_cell,
DEGs-scRNA-sample and DEGs-Bulk

Intriguingly, there were 245 and 197 DEGs-scRNA-
cancer_cell that were also detected in DEGs-scRNA-
sample and DEGs-Bulk analyses, respectively; a total of
57 genes were only found in DEGs-scRNA-cancer_cell
(only-DEGs-scRNA-cancer_cell), including 51 upregulated
and 6 downregulated genes. The top eight highly variable
only-DEGs-scRNA-cancer_cell were PDCD6, HMGA1,
CYBA, SPAG7, UQCRFS1, FAM20A, PDCD4, and
EMC6. The top 30 highly variable genes were shown in
Fig. 3 and Supplementary Fig. 6.

A total of 12,164, 10,349, and 9964 non-DEGs-scRNA-
cancer_cell were also confirmed as non-DEGs-scRNA-
sample, non-DEGs-Bulk, and non-DEGs-scRNA-sample&non-
DEGs-Bulk, respectively. A total of 543 and 2313
non-DEGs-scRNA-cancer_cell were also identified as DEGs-
scRNA-sample and DEGs-Bulk. Notably, we found that
these DEGs-scRNA-sample&non-DEGs-scRNA-cancer_cell

Fig. 1 Overview of the 1,159,219 single cells from eighteen tumor
samples and seven normal samples. a The sample origin of the cells;
b The cell types identified by marker genes.
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or DEGs-Bulk&non-DEGs-scRNA-cancer_cell had relatively
high expression levels in non-LUAD tumor cell clusters com-
pared with LUAD tumor cell clusters, such as C1QA (DEGs-
scRNA-sample and non-DEGs-scRNA-cancer_cell) and RETN
(DEGs-Bulk and non-DEGs-scRNA-cancer_cell) in Myeloid

cluster (Supplementary Fig. 7). This suggested that gene
expression of non-LUAD tumor cells has a significant effect on
differential analysis that could result in the inability to detect
these genes in the DEGs-scRNA-sample or DEGs-Bulk
analyses.

Fig. 2 UMAP plot of the marker genes. Expression of marker genes for Cancer, Alveolar, Myeloid cells, Endothelial cells, Fibroblasts, Mast
cells, B cells, and T cells.
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Survival analyses

To explore the relationship between only-DEGs-scRNA-
cancer_cell and survival in LUAD, we performed survival
analyses in only-DEGs-scRNA-cancer_cell. As a result, 492
and 1063 LUAD patients with complete follow-up records
were included from TCGA and GEO databases. We
respectively obtained 14 and 22 only-DEGs-scRNA-can-
cer_cell, which were closely related with survival in the
TCGA and GEO cohorts. Moreover, 8 only-DEGs-scRNA-
cancer_cell, which had a statistically significant influence
on the prognosis, were identified in TCGA and GEO sur-
vival analyses (Fig. 4).

Functional enrichment analyses

A direct comparison of LUAD tumor and alveolar cells was
performed based on DEGs-scRNA-cancer_cell. As shown
in Fig. 5, Myc targets v2, G2M checkpoint, E2F targets,
glycolysis, and DNA repair were the top five enriched
pathways in LUAD tumor cells. The glycolysis pathway as
a candidate target for combinatorial therapeutic intervention
has been identified in several studies. Recent studies
showed that tumor glycolysis was associated with immune
resistance in lung cancer, and glycolysis-related genes were
upregulated in lung cancer patient samples poorly infiltrated
by T cells [19]. Overexpression of glycolysis-related
molecules impaired T cell killing of tumor cells, whereas
inhibition of glycolysis enhanced T cell-mediated antitumor
immunity in vitro and in vivo. E2F transcription factors
(E2Fs) have a clearly defined role in cell-cycle control,
while recent work has revealed that E2Fs play key roles in
mediating tumor development and metastasis [20]. Recent

studies have suggested that the E2F pathway controls the
expression of genes important for angiogenesis, remodeling
of the extracellular matrix, tumor cell survival, and tumor
cell interactions with vascular endothelial cells that facilitate
metastasis to the lungs [21]. We also found that DEGs in
LUAD tumor cells were enriched in G2M checkpoint and
DNA repair pathways and played an important role in cell-
cycle regulation.

To explore the relationship between the DEGs-scRNA-
cancer_cell expression and immunotherapy in LUAD, the
immune-related genes that were only identified in DEGs-
scRNA-cancer_cell were selected by the ImmPort database.
Functional enrichment analyses were performed as shown
in Fig. 6. Immune-related genes were mainly enriched in
regulation of cytokine production, response to peptide
(GO), and cytokine–cytokine receptor interaction.

Flow cytometry and qRT-PCR analyses

Flow cytometry was performed to validate tumor cells
marked with EPCAM, and alveolar cells marked with
FOLR1 in normal and LUAD samples (Fig. 7). To validate
the DEGs-scRNA-cancer_cell in our study, qRT-PCR was
also performed. As shown in Fig. 8, we observed that the
expression levels of PDCD6 (P < 0.01), HMGA1 (P <
0.01), SPAG7 (P < 0.01), UQCRFS1 (P < 0.01), PDCD4
(P < 0.01), and EMC6 (P < 0.01) were significantly
increased in LUAD tumor cells and the expression levels of
FAM20A (P < 0.01) and CYBA (P < 0.01) were increased
in alveolar cells. These findings were consistent with the
DEG-group analyses, suggesting that 10× scRNA-seq data
analysis can effectively explore DEGs between LUAD
tumor cells and alveolar cells.

Fig. 3 Heatmapof DEGs for LUAD and alveolar cells. Heatmap of the top 30 only-DEGs-scRNA-cancer_cell between LUAD and
alveolar cells.
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Fig. 5 GSVA analysis in LUAD tumor and alveolar cells. GSVA analysis of the hallmark pathways between LUAD tumor and alveolar cells.

Fig. 4 Kaplan–Meyer plot of OS in TCGA and GEO databases with high or low expression group of 8 only-DEGs-scRNA-cancer_cell. The
P values of a–p were all less than 0.05.
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Discussion

This study was based on integrated analysis of 10× scRNA-
seq data, which included more than 20 samples from the
Department of Thoracic Surgery, Zhongshan Hospital,
Fudan University, ArrayExpress. A total of 159,219 cells
were included in our study. Of these, 122,082 cells (76.7%)

originated from LUAD tissues and 37,137 (23.3%) origi-
nated from non-malignant lung tissues. In our analysis, we
found that the expression of EPCAM was elevated in both
cancer cells and epithelial cells. However, we used the
expression levels of tumor marker genes, the origin of cells,
and estimated value of CNVs to distinguish the two types of
cells as suggested in previous studies. By analyzing

Fig. 6 Functional analysis of only-DEGs-scRNA-cancer_cell rela-
ted immune genes. a Heatmap of enriched terms across input gene
lists, colored by P values. Network of enriched terms: b colored by

cluster ID, where nodes that share the same cluster ID are typically
close to each other; c colored by P value, where terms containing more
genes tend to have a more significant P value.
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Fig. 7 Flow cytometry for cancer cells and alveolar cells. Identified and sorted the cancer cells and alveolar cells in tumor sample and normal
sample by flow cytometry.

Fig. 8 Validation of the top eight highly variable only-DEGs-
scRNA-cancer_cell. The mRNA relative expression level of PDCD6
(P < 0.01), HMGA1 (P < 0.01), SPAG7 (P= 0.02), UQCRFS1

(P < 0.01), PDCD4 (P < 0.01), EMC6 (P < 0.01), and FAM20A (P <
0.01) were significantly increased in LUAD tumor cells while the
expression levels of CYBA (P < 0.01) were increased in alveolar cells.
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hundreds of thousands of cells from LUAD and normal
tissues, we identified hundreds of genes whose expression
was significantly altered in LUAD tumor cells that could
not be distinguished by RNA-seq or microarray. A large
proportion of these genes was correlated with the prognosis
of LUAD, which improves our understanding of the
occurrence and development of LUAD and will help in the
development of therapeutic targets.

In the present study, we identified 51 genes significantly
altered in cancer cells compared with alveolar cells, which
could not be identified using traditional RNA-seq or
microarray. Interestingly, we found that based on the top
eight highly variable only-DEGs-scRNA-cancer_cell, the
high expression levels of HMGA1 and EMC6 were related
to poorer prognosis in both the TCGA and GEO databases.
It has been suggested that HMGA1 can regulate gene
expression and alter chromatin structure and serves as an
architectural transcription factor [22]. Recent studies have
revealed that HMGA1 is a promising prognostic biomarker
for several cancer types, including lung cancer because of
its association with poor differentiation status [23]. Further
analyses showed that HMGA1 was significantly associated
with CD8+ and CD4+ T cells in many carcinomas [24].
EMC6, also called transmembrane protein 93 (TMEM93),
plays an important role in autophagy and is located on
chromosome 17p13.2 [25, 26]. Previous studies have shown
that EMC6 is an autophagy-related gene that contains two
conserved transmembrane domains, and interacts with
Beclin1 and Rab5a [27]. Shen et al. reported [28] that
EMC6-mediated autophagy was associated with inactiva-
tion of the PIK3CA/AKT/mTOR signaling pathway.
Although previous studies have shown that EMC6 is widely
expressed in normal human tissues [27], Shen et al. [25]
suggested that the expression level of EMC6 in cancer
samples is significantly higher than that in normal tissues.
The expression and role of EMC6 in tumor progression has
not yet been fully investigated; further studies are necessary.

Tumors are mixtures of different compartments which
include immune, stroma, tumor, and normal cells [29]. The
tumor microenvironment (TME) is an important component
of tumor tissues, which plays an active role in cancer pro-
gression and therapeutic responses [3, 30]. For instance,
several studies have suggested that T cells, which are clo-
sely related to immune therapy and patient survival, repre-
sent the most prevalent cell type in the TME of LUAD
[17, 31]. To study the TME using traditional RNA gene
expression, many computational algorithms have been
developed to deconvolve the mixed signals in bulk cancer
tissue, such as ESTIMATE [32] and CIBERSORT [33].
However, there are some limitations in present traditional
RNA gene expression-based deconvolution methods. For
example, CIBERSORT requires information about the pure
expression of compartments as a reference, which is

difficult to obtain. Moreover, true compartments in each
sample are usually uncertain and samples are inherently
heterogeneous, which may affect the accuracy of calcula-
tions [34]. Using 10× scRNA-seq data, we can identify and
characterize stromal cells and the extracellular matrix,
which will help us to improve our understanding of the
contribution of the TME to cancer progression and potential
targets for immunotherapy in the future.

Heterogeneity, which contributes to the existence of
different compartments within a tumor, is well known as a
prominent characteristic of tumors [35]. In addition, it is
essential to investigate the evolution of these compartments
since it represents a driving force behind tumor develop-
ment, tumor progression, drug resistance, and metastasis
[36]. Traditional RNA-seq provides an average of gene
expression in the sample, and the analysis of tumor gene
expression can be obscured by the existence of non-
neoplastic cells. Compared with RNA-seq technologies,
10× scRNA-seq allows us to delve into the transcriptome of
individual cells and enables exploration tumor hetero-
geneity [5, 37]. In addition, we found that T cells are the
dominant cell type in tumor and normal samples, indicating
that the gene expression of T cells has a significant effect on
overall gene expression, consistent with previous studies
[38, 39].

In summary, the 10× genomics technique of single-cell
RNA seq has some limitations, such as only sequencing the
3′ end, expensive cost, and relatively low coverage [34]. All
single-cell RNA-seq technologies, including 10× scRNA-
seq technology, are flawed in reliable sensitivity of gene
detection. Furthermore, the expression levels of genes
detected in cells may not reflect the true expression levels,
since the zero inflated exits in most scRNA-seq technolo-
gies. However, when compared with traditional RNA-seq
technology, scRNA-seq had the relatively good perfor-
mance in distinguishing the molecular characteristics in
each cell type [40]. Using 10× scRNA-seq data, we detected
and compared DEGs from different levels. We revealed the
critical genes that may regulate tumor proliferation, inva-
sion, metastasis, and drug resistance in LUAD. In addition,
our data can be a valuable resource for people to further
explore the biological insights of LUAD in future, espe-
cially in the analysis of tumor immune phenotypic. We
believe these observations will improve our understanding
of the contribution of the DEGs to cancer progression and
potential therapeutic targets.
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