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Abstract
As novel immunological treatments are gaining a foothold in the treatment of acute lymphoblastic leukemia (ALL), it is
elemental to examine ALL immunobiology in more detail. We used multiplexed immunohistochemistry (mIHC) to study the
immune contexture in adult precursor B cell ALL bone marrow (BM). In addition, we developed a multivariate risk
prediction model that stratified a poor survival group based on clinical parameters and mIHC data. We analyzed BM biopsy
samples of ALL patients (n= 52) and healthy controls (n= 14) using mIHC with 30 different immunophenotype markers
and computerized image analysis. In ALL BM, the proportions of M1-like macrophages, granzyme B+CD57+CD8+
T cells, and CD27+ T cells were decreased, whereas the proportions of myeloid-derived suppressor cells and M2-like
macrophages were increased. Also, the expression of checkpoint molecules PD1 and CTLA4 was elevated. In the
multivariate model, age, platelet count, and the proportion of PD1+TIM3+ double-positive CD4+ T cells differentiated a
poor survival group. These results were validated by flow cytometry in a separate cohort (n= 31). In conclusion, the immune
cell contexture in ALL BM differs from healthy controls. CD4+PD1+TIM3+ T cells were independent predictors of
poor outcome in our multivariate risk model, suggesting that PD1 might serve as an attractive immuno-oncological target in
B-ALL.

Introduction

Acute lymphoblastic leukemia (ALL) is a malignant disease
of the early lymphoid precursors, which occurs in all age
groups. The contemporary survival rates in children are
excellent, whereas the treatment results in adults are still
suboptimal and most patients die of their leukemia. Current
treatment consists of multiagent chemotherapy to induce
and consolidate remission, followed by prolonged main-
tenance therapy [1, 2]. Treatment guided by sensitive
monitoring of minimal residual disease (MRD) and the
introduction of pediatric-modeled regimens in younger
adults have improved patient outcome [3–5].

Philadelphia chromosome-positive (Ph+) ALL forms the
largest subgroup in adult ALL [6]. Introducing tyrosine
kinase inhibitors (TKIs) into treatment regimens has
improved survival in Ph+ ALL [7–9]. In addition to direct
oncokinase inhibition, TKI therapy modulates the immune
system, which may play a critical role in suppressing the
growth of leukemic cells [10–14].

In addition to the anti-CD20 antibody rituximab, novel
immunotherapeutic approaches such as anti-CD3-CD19
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bispecific blinatumomab, chemotherapy-conjugated anti-
CD22 antibody inotuzumab ozogamicin, and CD19-specific
chimeric antigen receptor (CAR) T cell therapy have shown
promising results [15–18]. Despite recent advances in the
treatment, considerable number of ALL patients still
experience relapse and leukemia-related death.

In solid tumors, the immune contexture has been shown
to impact outcome [19]. In ALL, the immunological status
of the bone marrow (BM) niche has not been thoroughly
studied, even though increasing evidence suggests that the
immune system contributes both to the development and
outcome of leukemia [20, 21]. Given the success of novel
immunotherapies in oncology, unveiling the immunological
basis of ALL is warranted.

In this study, we present a detailed description of
immune cell constitution in adult precursor B cell ALL BM
microenvironment at diagnosis using multiplex immuno-
histochemistry (mIHC) and computerized image analysis
(Fig. 1a). The quantitated immune cell subsets were corre-
lated with clinical parameters, stratifying a poor outcome
group with increased number of CD4+PD1+TIM3+
T cells, higher age, and a low peripheral blood (PB) platelet
count at diagnosis. These findings were validated in a
separate cohort using multicolor flow cytometry (FC).
Together, these results shed light on the immunological
composition prevailing in ALL BM and its clinical
significance.

Materials and methods

Study design

Discovery cohort

To study immune cell constitution in ALL using mIHC, we
collected deposited, diagnostic-phase, formalin-fixed, and
paraffin-embedded (FFPE) BM biopsies of adult precursor
B cell ALL patients (n= 52). The cohort was retrospective
and included both Ph+ (n= 31) and Ph− (n= 21) patients.
Five patients were treated in Tampere University Hospital
(Finland) and the others in Helsinki University Hospital
(HUH; Finland). Patients with a previously treated malig-
nancy were excluded. BM biopsies from healthy controls (n
= 14) were used as a reference. Control patients were
referred to the hematology or internal medicine outpatient
clinic most commonly due to unclear thrombocytosis or
anemia, but neither hematologic malignancy, chronic
infection, nor autoimmune disease was found in diagnostic
examinations and 6-year follow-up (Supplementary
Table S1). The patients signed a written informed consent
for the study and for collection of clinical data to the Fin-
nish Hematology Registry (FHR). The study was conducted

in accordance with the Declaration of Helsinki and the
HUH Ethical Committee (DNRO 303/13/03/01/2011).

Validation cohort

To validate the prognostic biomarkers that were found in
mIHC, we used FC to analyze BM samples from 31 pre-
cursor B cell ALL patients treated in all university hospitals
across Finland. The cohort was retrospective and included
both Ph+ (n= 13) and Ph− (n= 18) patients. The samples
were viably frozen diagnostic-phase BM mononuclear cells
obtained from the Finnish Hematology Registry and Clin-
ical Biobank (FHRB, fhrb.fi).

Clinical data

As seven patients had samples in both cohorts, we studied
in total 76 ALL patients. FHR served as a source for
attaining patient-related clinical data. In both cohorts, we
assessed altogether 33 clinical variables, including baseline
laboratory values, MRD status at different time points,
CD20-positivity, spleen size, comorbidities, performance
score, and status of allogeneic hematopoietic stem cell
transplantation (alloHSCT) (Supplementary Table S2). The
observation time started from the day of diagnosis and
ended when an event (relapse or death due to any cause)
occurred or, in the absence of an event, at the last day of
follow-up.

In the Discovery cohort, six Ph+ ALL patients were
treated prior to the TKI era and were excluded from the
survival analysis. One Ph− ALL patient had received non-
protocol treatment and another was treated with an older
protocol and were therefore excluded from the survival
analysis. All patients (n= 44) in the survival analysis were
treated according to Finnish Leukemia Group (FLG)
ALL2000 protocol or NOPHO ALL-2008 protocol [3]. In
addition, all Ph+ patients (n= 25) received TKIs as part of
their treatment protocol. The patients in the Validation
cohort received treatments according to the same protocols
as the Discovery cohort.

Patient characteristics

A detailed list of patient characteristics is found in Table 1.
The patients in different cohorts did not differ significantly
in terms of age, diagnostic-phase laboratory values, per-
formance score, or alloHSCT prevalence (Mann–Whitney
U test for continuous and Fisher’s exact test for
categorical variables). There were slightly more females
in the Discovery cohort than in the Validation cohort (45%
vs. 35%). Healthy controls did not differ significantly
from the Discovery cohort in terms of age or gender
distribution.
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Methods

Tissue microarrays (TMAs)

An experienced hematopathologist evaluated the FFPE BM
biopsies marking out the most representative areas with
high leukemic cell infiltration. Duplicate 1 mm diameter
spots were taken from the selected areas for TMA con-
struction. Control spots from non-ALL patients were chosen
from tissue regions with high cellularity.

Multiplexed immunohistochemistry

The TMA sections were stained with both 5-plex fluor-
escent and subsequent 3-plex chromogenic staining.
Immune cell panels included antibodies to detect B and T
lymphoid cells, natural killer (NK) and dendritic cells
(DCs), macrophages, and myeloid-derived suppressor cells
(MDSCs) (Supplementary Table S3). In addition, clinically
relevant immune checkpoint receptors (PD1, LAG3, OX40,
TIM3, CTLA4, HLA-ABC) and ligands (PD-L1, PD-L2,
HLA-G) alongside with various activation markers were
analyzed. The original protocol is described in detail by
Blom et al. and adapted by Brück et al. [22, 23]. For anti-
bodies, see supplementary Table S4.

Image preprocessing

The individual chromogen staining signals were separated
by deconvolving the brightfield images [24]. Spot images
were then registered with two-dimensional phase correla-
tion method using mean image of both fluorescent and

brightfield channels [25]. Before registration, mean images
were downsized by a factor of eight and image histograms
were adapted to each other. Image preprocessing was per-
formed in a numerical computing platform (MATLAB,
MathWorks, Natick, MA, US).

Image analysis

Gray-scale image channels of each TMA spot were evaluated
in order to ensure the staining quality. Blurred focusing or
unsuccessful image registration led to image disqualification.
Unsuccessful registration was mostly induced by air bubbles
in mounting media or shattered tissue. We segmented cell
masks with parent immune cell markers (e.g., CD3 for
T cells) using Otsu’s thresholding method and separated
single cells from aggregates using intracellular intensity pat-
terns. Cell segmentation, intensity measurements, and cell
classification were implemented in an image analysis platform
(CellProfiler 2.1.2 [26–28]). Total cell number for each TMA
spot was calculated with Fiji from the total area of binary 4,6-
diamidino-2-phenylindole images. Single-cell analysis
(FlowJo v10; SI) was used for marker co-localization and cell
classification with integrated intensity.

TMA spots with <1000 cells were excluded. In order to
avoid bias due to cell number variation between spots, each
immune cell type was quantified either as a proportion of all
cells in each TMA spot or as a proportion of a defined
immunophenotype to the particular cell type (e.g., CD3
+CD4+/PD1+TIM3+ T cells of all CD3+CD4+ T cells
[%]). The mean values of each cell class or

Fig. 1 a Overview of the tissue microarray (TMA) analysis pipeline.
TMAs were constructed from duplicate bone marrow (BM) biopsy
punches from regions with high leukemic cell infiltration. TMA slides
were then stained with multiplexed immunohistochemistry (mIHC)
consisting of 5-plex fluorescent and 3-plex chromogenic dyes. Histo-
logical images were scanned and registered, and then cells were seg-
mented based on differential spatial intensity using Otsu’s thresholding
method. The intensity of each marker was quantified and classified.
Finally, expression profiles of various markers were aggregated for
more detailed data analysis. FFPE formalin-fixed paraffin-embedded.
b Heatmap visualization of quantified immune cells (proportion of all
cells) and their immunophenotypes (proportion of the parent immune
cell). Spearman correlation distance and Ward linkage (ward.D2)
method were used for hierarchical clustering. c ALL-to-control ratios
were transformed by two-fold logarithmic transformation and anno-
tated according to literature as anticancer immunity (green) or
immunosuppression marker (orange). Only significantly varying (q <
0.05; Benjamini–Hochberg-adjusted Mann–Whitney U test) median
values are included. It should be noted that, in case of particularly low
cell numbers, this representation may skew the output, and the color
annotations are a simplification of a much more diverse reality. For
example, the absolute count of TIM3-expressing T cells was low both
in ALL patients and controls (Fig. 2c), but the proportional difference
was almost six-fold

Table 1 Patient characteristics of the Discovery (mIHC) and
Validation (FC) cohort subjects included in survival analyses

Variable mIHC (n= 44) FC (n= 31)

Gender, female (%) 45 35

Gender, male (%) 55 65

AlloHSCT (%) 55 52

Diagnostic data (median, range)

Age (years) 47 (16–72) 43 (19–69)

Ph+ (%) 57 42

CD20+ (%) 36 58

Leukocytes (10E9/l) 15.6 (0.4–174) 18.4 (0.9–188.5)

Platelets (10E9/l) 47 (3–233) 45 (3–252)

BM blasts (%) 90 (50–100) 90 (50–100)

WHOa ≥1 (%) 66 71

There were no significant differences between the cohorts (Mann–
Whitney U test for continuous and Fisher’s exact test for categorical
variables). The lowest pretreatment platelet count ±2 days around the
diagnosis date was selected

alloHSCT allogeneic hematopoietic stem cell transplantation, BM bone
marrow, mIHC multiplexed immunohistochemistry, FC flow
cytometry
aWHO/ECOG performance scale
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immunophenotype were calculated from the duplicate spots
obtained from the same BM sample.

Flow cytometry

Viably frozen BM mononuclear cells (N= 31) were first
thawed and stained using CD3-PerCP-Cy5.5 (SK7, BD
Pharmingen), CD8-FITC (SK1, BD Pharmingen), CD4-
BV510 (SK3, BD Pharmingen), TIM3-PE-Cy7 (F38-2E2,
Invitrogen), PD1-AlexaF647 (EH12.1, BD Pharmingen),
CD45-BV421 (HI30, BD Horizon), CCR7-PE (150503,
R&D Systems), and CD45RA-AlexaF700 (HI100, BD
Pharmingen) antibodies. Fluorescence was measured with
FACSVerse (BD Pharmingen). The proportion of CD3+CD4
+/PD1+TIM3+ cells was used in survival analysis similarly
as with mIHC data (Supplementary Figure S1).

Statistical analysis

The mIHC stainings were executed in two separate batches.
In order to eliminate a batch effect, data were mean-
centered. Mann–Whitney U test was used for comparing
two groups of continuous variables. For multiple test cor-
rection, Benjamini–Hochberg’s method was applied [29].
To examine associations between survival, clinical para-
meters, and mIHC results, all variables with P < 0.20 (log-
rank test, supplementary Table S5) in univariate Cox pro-
portional hazards analysis were included in a L1-penalized
elastic net regression analysis that performs both model
shrinkage and variable selection [30]. The shrinkage para-
meter lambda (λ) was defined by minimum mean cross-
validated error. Scaled Schoenfeld residuals were used to
confirm the proportional hazards assumption of the model.
In addition, competing risks were analyzed with Gray’s test
[31]. We assessed model prediction by comparing the area
under the receiver operating characteristic (AUROC) curves
(bootstrap method, number of iterations: 4000), time-
dependent ROC curves (IPCW [inverse probability of
censoring weighting] approach), and C-statistic values of
different models. Statistical analyses were performed with R
v3.3.3 [32] and Prism v7.0 (GraphPad Software Inc). R
packages glmnet, corrplot, survminer, survival, ggplot2,
cmprsk, pROC, plotROC, timeROC, and gplots were used
for statistical analysis and data visualization.

Results

Immune cell composition in ALL BM
microenvironment differs from healthy

In order to visualize immune profiles of ALL patients (n=
52) and controls (n= 14) analyzed with mIHC (Discovery

cohort), we mapped quantified immune cells and their
single-marker phenotypes (Fig. 1b). Hierarchical clustering
analysis revealed that immune cell subtypes linked with
cytolytic activity (e.g. NK cells and granzyme B-positive
T cells) were decreased and immunoregulatory markers
(e.g., CTLA4+ T cells and MDSCs) increased in ALL BM,
grouping ALL patients and controls distinctly from each
other. The immune contexture of Ph+ ALL BM did not
differ from Ph− ALL BM.

Next we assessed significant (Mann–Whitney U test, q <
0.05) differences between immune cell subsets and their
phenotypes in ALL vs. control BM. Immune cell subtypes
and markers associated with regulation of immune respon-
ses (e.g., MDSCs, PD1, and CTLA4) were elevated in ALL
BM, whereas pro-inflammation-related markers (e.g., M1
macrophages, NK cells, and CD27+ T cells) were
decreased (Fig. 1c).

ALL BM is reflected by diminished proportion of
activated T cells and M1 macrophages, as well as
lowered cytolytic activity

A T helper type 1 (Th1)-driven immune response and
especially CD8+ T cells have been associated with bene-
ficial prognosis and anticancer protection [33]. In addition,
M1-like macrophages secrete high levels of inflammatory
cytokines and are associated with antitumor responses [34].
Therefore, we investigated whether the levels of CD8+
T cells, NK cells, and M1-polarized macrophages are
affected in ALL patients. The proportion of M1-like mac-
rophages was decreased (0.8% vs. 5.9% of CD68+ cells in
ALL compared to healthy BM, q= 0.0002; Fig. 2a).
Similarly, the proportion of CD8+granzyme B+CD57+
T cells (11.5% vs. 24.0% of CD8+ T cells, q= 0.0001) as
well as CD27+ T cells (7.9% vs. 21.5% of CD3+CD4+
T cells, q < 0.0001 and 7.7% vs. 34.6% of CD3+CD8+
T cells, q < 0.0001; Supplementary Figure S2) was
decreased in ALL BM, suggesting suppressed cytolytic and
co-stimulation ability, respectively. The proportion of NK
cells of all cells (0.2% vs. 0.9%, q < 0.0001, Fig. 2b) was
decreased in comparison to controls.

Increased levels of myeloid M2-polarized
macrophages and MDSCs in ALL BM

As M2-like macrophages and MDSCs are able to promote
tumor growth by dampening Th1-mediated immune
responses, we next examined the level of immunosuppres-
sive myeloid cells [34, 35]. M2-like macrophages were
enriched in ALL BM (8.3 vs. 1.7%, of CD68+ cells, q <
0.0001; Fig. 2a). Similarly, the proportion of MDSCs
was increased (0.9% vs. 0.04% of all cells, q < 0.0001;
Fig. 2b).
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The expression of immune checkpoints PD1 and
CTLA4 is upregulated in T cells

Next, we evaluated the expression of pivotal immune
checkpoint molecules in T cells (Fig. 2c). The expression of

PD1 (24.0 vs. 1.7% of CD4+ cells, q < 0.0001 and 21.2 vs.
2.0% of CD8 cells, q < 0.0001) and CTLA4 (9.4 vs. 0.9% of
CD4+ cells, q < 0.0001 and 6.6 vs. 1.2% of CD8+ cells, q
< 0.0001) was pronounced in ALL BM. However, the
expression of LAG3 (7.7 vs. 17.3% of CD4+ cells, q <
0.0001 and 4.8 vs. 19.3% of CD8+ cells, q < 0.0001) and
TIM3 (0.0 vs. 0.8% of CD4+ cells, q < 0.0001 and 0.0 vs.
0.9% of CD8+ cells, q < 0.0001) were decreased in ALL
compared to the control BM. The expression of OX40 was
increased in CD4+ T cells (16.1 vs. 10.1% of CD4+ cells,
q < 0.0001), but no difference was seen in CD8+ T cells.

Antigen-presenting myeloid DC type 1 (mDC1) and
CD4-positive memory T cells are increased in ALL
BM

T cell priming is dependent on antigen presentation. mDC1
are essential in presenting cancer-related antigens and
inducing a Th1-fashioned immune response by producing
high amounts of interleukin-12 [36]. The proportion of
mDC1s was enriched (3.5% [interquartile range (IQR) 1.7–
5.3%] vs. 2.0% [IQR 1.1–2.8%] of all cells, q= 0.03). In
addition, the proportion of CD4+CD45RO+ memory
T cells (41.0% [IQR 30.5–51.4%] vs. 25.8% [IQR 19.1–
30.1%] of CD4+ cells, q= 0.002) was elevated. The per-
centage of CD8+CD45RO+ T cells was increased as well
but did not reach statistical significance.

CD4+PD1+TIM3+ T cells, platelet count, and age
predict survival

To study the synergy and translational significance of
immune profiles and clinical parameters, we performed L1-
penalized Cox regression analysis on preselected covariates
(P < 0.20 in univariate Cox regression). The resulting risk
model was used to stratify patients into dichotomous,
equally sized groups (i.e., high-risk and low-risk groups).
The primary endpoint was relapse-free survival (RFS).

In the risk stratification model, high expression of BM
CD4+PD1+TIM3+ T cells, age above the cohort median,
and low PB platelet count at diagnosis differentiated a poor
survival group. Furthermore, multiple other potential
immune biomarkers were discovered in univariate analysis,
even though these did not stand out in our multivariate
model (Supplementary Table S5). The hazard ratio (HR) for
overall survival (OS) in the high-risk group was 4.9 (95%
confidence interval (CI) 1.8–13.3; P= 0.0007, log-rank
test; Fig. 3a), for RFS 3.7 (95% CI 1.4–9.6; P= 0.004, log-
rank-test; Fig. 3b), and for event-free survival (EFS) 4.0
(95% CI 1.6–10.3; P= 0.002; Supplementary Figure S3A,
B). The competing risk analysis demonstrated that both
deaths (P= 0.052, Gray’s test) and relapses (P= 0.072)
were more prevalent and censoring less prevalent

Fig. 2 Levels of a M1-like and M2-like macrophages; b Natural killer
(NK) cells and myeloid-derived suppressor cells (MDSCs); c PD1-,
TIM3-, CTLA4-, LAG3-, and OX40-expressing T cells in multiplexed
immunohistochemical analysis were compared with Mann–Whitney U
test and p values adjusted using Benjamini–Hochberg method (q-
values). **q < 0.001, ***q < 0.0001
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(P= 0.0058) in high-risk patients (Fig. 3c). In univariate
analysis, the high expression (>0.1% of T cells) of PD1+
TIM3+ double-positive CD4+ T cells trended toward poor

survival (Fig. 3d, e; Supplementary Figure S3C), and
relapses were more common in high-expressing patients in
competing risk analysis (Supplementary Figure S3D).
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Although the mean proportion of PD1+TIM3+ T cells in
ALL patients is low, it is heterogeneously expressed (mean
0.12%, range 0–1.55%, standard deviation (SD) 0.31;
Fig. 3f). Patient characteristics of the high- and low-risk
groups in the risk stratification model are described in
Supplementary Table S6. The high-risk group was char-
acterized with higher BM blast proportion (P= 0.003), but
no other association with clinical parameters was found.

The results were validated in the Validation cohort. Even
with a sample size of 31 patients, high proportion of CD4
+PD1+TIM3+ T cells (divided according to cohort med-
ian), higher age (divided according to cohort median), and
low platelet count predicted poor OS (HR 4.7, 95% CI
0.98–22.5; P= 0.03, log-rank test; Fig. 4a), RFS (HR 4.9,
95% CI 1.3–19.0; P= 0.01, log-rank test; Fig. 4b), and EFS
(HR 4.4, 95% CI 1.3–14.2; P= 0.009; Supplementary
Figure S4A, B). The mean proportion of PD1+TIM3+
T cells remained small in ALL samples (mean 0.88%, range
0.00–10.11%, SD 1.88). Similarly, in univariate analysis,
high proportion of CD4+PD1+TIM3+ T cells trended
toward poor RFS and EFS but not OS (Fig. 4c, d; Sup-
plementary Figure S4C). In competing risk analysis,
relapses were more prevalent in high-risk patients (P=
0.014, Gray’s test; Fig. 4e) and censoring less common
(P= 0.013) in patients with PD1+TIM3+ expression
superior to median in CD4+ T cells (Supplementary
Figure S4D). Patient characteristics of the risk groups in the
Validation cohort are described in Supplementary Table S6.

High proportion of PD1+TIM3+ T cells is associated
with immunologic activity

As the proportion of CD4+ T cells expressing PD1+TIM3+
were associated with poor survival, we next studied the
interaction of CD4+PD1+TIM3+ T cells with clinical and
immune parameters. There was no correlation between PD1
+TIM3+ expression and clinical laboratory parameters or
age (Supplementary Figure S5). Interestingly, the abun-
dance of CD4+ and CD8+ T cells and their expression of
GrB and TIM3 and the number of MDSCs correlated
(Spearman correlation) positively with CD4+PD1+TIM3+
T cells (Fig. 5a).

Integrating MRD status to the multivariate model

Achieving MRD negativity is one of the strongest pre-
dictors of outcome in adult ALL [37]. Therefore, we
compared long-term survival prediction ability of our
multivariate risk model to risk stratification by MRD
status at 4 months post-diagnosis. MRD was primarily
measured using polymerase chain reaction (PCR)-based
approaches (quantitative reverse transcription PCR/allele-
specific oligonucleotide-PCR), but in the absence of a
suitable follow-up marker for PCR, MRD measurement
using multiparameter FC with sufficient sensitivity (10−4)
was accepted as well. MRD negativity was defined as
<10−4 leukemic blasts per healthy cells. Our model pre-
dicted RFS, EFS, and OS with higher confidence than
MRD monitoring or risk stratification according to origi-
nal NOPHO-ALL2008 [3] or FLG ALL2000 protocols
(Supplementary Table S7) using AUROC comparison
(bootstrap method; Fig. 5b and Supplementary
Figure S6A, B) and trended toward superior prediction
with both C-statistic and time-dependent AUC compar-
ison (IPCW approach; Fig. 5c and Supplementary
Figures S6C, D). Interestingly, by supplementing MRD
status at 4 months with the immunoprofiling model, each
covariate remained independent (P < 0.05) and the overall
model improved prediction. Similar model improvement
did not occur if the model was combined with NOPHO-
ALL and ALL2000 risk classification.

Discussion

The results of integrative immune profiling suggest that
immune cell subtypes and markers associated with immune
regulation (such as MDSCs, PD1, and CTLA4) are
increased in ALL BM compared to healthy controls. In
addition, high proportion of CD4+PD1+TIM3+ double-
positive T cells, older age, and low platelet count at diag-
nosis identified a group with poor survival in two separate
cohorts.

mIHC allows in-depth cytometric evaluation of different
immune cell subtypes in their original BM microenviron-
ment. When analyzing samples in the TMA format, hun-
dreds of samples and tens of different marker combinations
can be analyzed simultaneously [38]. FFPE preserves
samples and bypasses the possible effects of cryopreserva-
tion on cell number, viability, and phenotype [39], thus
serving retrospective discovery studies ideally. Our mIHC
approach was supplemented with automated image analysis
for fast and objective immune cell classification and quan-
tification. We validated prognostic biomarkers with FC,
which is used in routine clinical practice for diagnostic and
follow-up purposes.

Fig. 3 Survival analysis in the Discovery cohort (multiplex immuno-
histochemistry). Forest plot of the risk stratification model for a OS
(overall survival) and b RFS (relapse-free survival). The risk stratifi-
cation model was divided by median into high- and low-risk groups
and plotted for a OS and b RFS (Cox regression analysis, log-rank
test). c Competing risk analysis of EFS was performed for the high-
and low-risk group stratification model (Gray’s test). d OS and e RFS
curves (Cox regression analysis, log-rank test) for patients categorized
by PD1+TIM3+ high-expressing (cutoff > 0.1% CD4+PD1+TIM3+
T cells) and low-expressing groups. f Levels of PD1+TIM3+ double-
positive T cells in ALL and healthy control bone marrow. *q < 0.05
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Fig. 4 Survival analysis in the Validation cohort (flow cytometry).
Forest plot of the risk stratification model for a OS (overall survival)
and b RFS (relapse-free survival). The risk stratification model was
divided by median into high- and low-risk groups and plotted for a OS
and b RFS (Cox regression analysis, log-rank test). Survival curves of

CD3+CD4+/PD1+TIM3+ cells categorized into two groups by
median and plotted for c OS and d RFS. e Competing risk analysis of
EFS was performed for the high- and low-risk group stratification
model (Gray’s test)
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In solid tumors, the immune contexture both before and
during treatment has been shown to predict treatment
responses to chemotherapy and immune checkpoint therapy
as well as survival [40–46]. In hematological malignancies,
the role of immune cell composition is still largely unre-
vealed, and to our knowledge, this is the first comprehen-
sive immunological study on precursor B-ALL BM.

As the immune system of cancer patients is constituted of
diverse cell populations engaging in a complex and dynamic
interaction [47], we investigated a wide variety of cell
populations and phenotype markers with known clinical sig-
nificance or well-established role in immunology [19, 48, 49].

Our results showed that, when compared to healthy BM, in
ALL, the proportion of antitumor-associated M1-like mac-
rophages was decreased, and the proportion of protumor-
associated M2-like macrophages and MDSCs was
increased, consistent with previous studies [50]. Also the
proportion of NK cells was lower, as has been previously
described [51]. Further, antigen-presenting mDC1s and the
proportion of CD4+ memory T cells were enriched in ALL
BM advocating for possible augmented antigen-
presentation capability.

T cells are perceived as the pivotal effector cell type in
immuno-oncology and most likely also in B cell ALL
owing to the success of treatments such as CD19-targeted
CAR T cell therapy and T cell engaging therapies [16–18,
52, 53]. Their level of infiltration into the tumor core and
invasive margin might predict, at least in colorectal cancer,
survival with higher accuracy than the classical tumor–
node–metastasis classification [40, 41]. Leukemia lacks an
objective central tumor and invasive margin, thus making
spatial immune stratification inapplicable.

Given the essential role linked to T cells, we designed the
characterization panels to focus on T cells and their
immunophenotype. Overall, the proportion of CD27+
T cells and CD8+granzyme B+CD57+ T cells was
decreased, and the expression of immune checkpoint
molecules PD1 and CTLA4 on T cells was increased. On
the other hand, the expression of LAG3 and TIM3 was
decreased and the expression of OX40 on CD4+ T cells
increased, but not on CD8+ T cells. The reason for con-
tradictory expression patterns of immune checkpoint
molecules remains unclear but might be explained with
different regulatory signaling pathways. Immune check-
point inhibitors have gained a strong foothold especially in
the treatment of metastatic melanoma and non-small-cell
lung cancer. Currently limited data are available on their

Fig. 5 a The correlation between CD4+PD1+TIM3+ T cell count and
other immune cell phenotypes. Significant values (q < 0.05, Spearman
correlation) are annotated in blue. To determine the prediction power
of b RFS, area under the receiver operating characteristic curves
(AUROC) of our model (green line) was compared to stratification by
MRD status at 4 months (light blue line) with the bootstrap method
(number of iterations: 4000). Similarly, a combination of both models
(red line) was developed and compared to stratification by MRD status
at 4 months and original study protocol stratifications (dark blue line).
Symbols for significance of the comparison: *P < 0.05, **P < 0.01,
***P < 0.001. c The time-dependent receiver operating characteristic
(ROC) curves (IPCW [inverse probability of censoring weighting]
approach) and C-statistic values for RFS. Our prognostic model (green
line) is compared to stratification by MRD status at 4 months post-
diagnosis (light blue line). Their combined model (red line) is com-
pared to stratification by MRD status at 4 months post-diagnosis and
original study protocol stratifications (dark blue line). Significance is
indicated at 2-, 4-, 6-, and 8-year time points with following symbols:
oP < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001
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efficacy in ALL; however, several studies regarding the use
of anti-PD1 (NCT02819804, NCT02767934) and anti-
CTLA4 (NCT02879695, NCT01919619) antibodies in
ALL are ongoing.

Interestingly, the high number of CD4+PD1+TIM3+
double-positive T cells, advanced age, and low platelet
count at diagnosis differentiated a poor survival group in
two separate cohorts. Our model outweighed stratification
by MRD and the original study protocol risk classification
in predicting long-term survival in our small Discovery
cohort, but the combination of our model with simple MRD
prediction strengthened them both. It is, however, fair to
keep in mind, that there were relatively few NOPHO-
ALL2008 patients, and almost all of them fell in the high-
risk category, making objective assessment of these two
study protocol risk stratifications in our study cohort inap-
plicable. While the model has to be validated in a larger
cohort, the high-risk group seemed to be associated with
higher BM blast proportion and PB leukocyte count, which
are markers of high disease burden. High expression of
CD4+PD1+TIM3+ T cells might predict poor survival in
adult B cell ALL patients [54]. Interestingly, high CD4
+PD1+TIM3+ T cell proportion was associated with
cytolytic (T cells and GrB expression), senescent (CD57
expression), and suppressive immune subsets (MDSCs).
Despite remaining unexplained by our study, PD1+TIM3
+CD4+ T cells might arise from prolonged immune
response against blasts, e.g., immune exhaustion, or chronic
inflammation related to BM expansion [55, 56]. While these
quantitative findings are merely descriptive by nature,
decreased effector and increased immunoregulatory phe-
notype prevailing in ALL BM might reflect a switch from
immune activation to immunosuppressive state. Further
functional studies are warranted to address this question. In
addition, as aging affects the immune system substantially
[57], it would be interesting to investigate the immune
microenvironment in pediatric ALL BM.

In conclusion, our results suggest that ALL BM has a
unique immune cell composition that is also associated with
clinical response to therapy. Additional research clarifying
the impact of ALL immunobiology on disease progression
and solving how to translate the immunophenotype features
into treatment biomarkers remain imperative.
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