Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polycomb group protein Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of self-renewal and proliferation genes

Abstract

Polycomb group (PcG) proteins play important roles in hematopoietic stem cell (HSC) self-renewal. Mel18 and Bmi1 are homologs of the PCGF subunit within the Polycomb repressive complex 1 (PRC1). Bmi1 (PCGF4) enhances HSC self-renewal and promotes terminal differentiation. However, the role of Mel18 (PCGF2) in hematopoiesis is not fully understood and how Mel18 regulates gene transcription in HSCs remains elusive. We found that acute deletion of Mel18 in the hematopoietic compartment significantly increased the frequency of functional HSCs in the bone marrow. Furthermore, we demonstrate that Mel18 inhibits HSC self-renewal and proliferation. RNA-seq studies revealed that HSC self-renewal and proliferation gene signatures are enriched in Mel18−/− hematopoietic stem and progenitors (HSPCs) compared to Mel18+/+ HSPCs. Notably, ATAC-seq revealed increased chromatin accessibility at genes important for HSC self-renewal, whereas CUT&RUN showed decreased enrichment of H2AK119ub1 at genes important for proliferation, leading to increased expression of both Hoxb4 and Cdk4 in Mel18−/− HSPCs. Thus, we demonstrate that Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of genes important for HSC self-renewal and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of Mel18 increases the number of immunophenotypic hematopoietic stem cells.
Fig. 2: Loss of Mel18 enhances HSC self-renewal in vivo.
Fig. 3: Loss of Mel18 promotes HSPC proliferation.
Fig. 4: Mel18 represses gene expression in HSPCs through altering chromatin accessibility.
Fig. 5: Loss of Mel18 increases the expression of cell cycle related genes in HSPCs.
Fig. 6: Mel18 represses the expression of cell cycle related genes through altering the distribution of H2AK119ub1 on chromatin.

Similar content being viewed by others

Data availability

Normalized sequencing data can be accessed from the Gene Expression Omnibus (GSE279249, GSE279250, GSE279251 and GSE279252). Requests for raw sequencing data should be addressed to and will be fulfilled by the corresponding author (YL).

Code availability

No custom code or software was used as part of the data analysis. All packages used are listed in the “Methods” section.

References

  1. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806.

    CAS  PubMed  Google Scholar 

  2. Attar EC, Scadden DT. Regulation of hematopoietic stem cell growth. Leukemia 2004;18:1760–8.

    CAS  PubMed  Google Scholar 

  3. Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol. 2004;4:878–88.

    CAS  PubMed  Google Scholar 

  4. Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci. 2012;1266:138–50.

    CAS  PubMed  Google Scholar 

  5. Akala OO, Clarke MF. Hematopoietic stem cell self-renewal. Curr Opin Genet Dev. 2006;16:496–501.

    CAS  PubMed  Google Scholar 

  6. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008;453:306–13.

    CAS  PubMed  Google Scholar 

  7. Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer. 2009;9:773–84.

    CAS  PubMed  Google Scholar 

  8. Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol. 2021;22:326–45.

    CAS  PubMed  Google Scholar 

  9. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. Pcgf homologs, Cbx proteins, and Rybp define functionally distinct Prc1 family complexes. Mol Cell. 2012;45:344–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol. 2003;31:567–85.

    CAS  PubMed  Google Scholar 

  11. Konuma T, Oguro H, Iwama A. Role of the polycomb group proteins in hematopoietic stem cells. Dev Growth Differ. 2010;52:505–16.

    CAS  PubMed  Google Scholar 

  12. Vidal M, Starowicz K. Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol. 2017;48:12–31.

    CAS  PubMed  Google Scholar 

  13. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    CAS  PubMed  Google Scholar 

  14. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21:843–51.

    CAS  PubMed  Google Scholar 

  15. Liu Y, Liu F, Yu H, Zhao X, Sahsida G, Deblasio A, et al. Akt phosphorylates the transcriptional repressor Bmi1 to block its association with tumor suppressing Ink4a-Arf locus. Sci Signal. 2012;5:ra77.

    PubMed  PubMed Central  Google Scholar 

  16. Yu H, Gao R, Chen S, Liu X, Wang Q, Cai W, et al. Bmi1 regulates Wnt signaling in hematopoietic stem and progenitor cells. Stem Cell Rev Rep. 2021;17:2304–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao R, Chen S, Kobayashi M, Yu H, Young SK, Soltis A, et al. Bmi1 promotes erythroid development through regulating ribosome biogenesis. Stem Cells. 2015;33:925–38.

    CAS  PubMed  Google Scholar 

  18. Kobayashi M, Lin Y, Mishra A, Shelly C, Gao R, Wang P, et al. Bmi1 maintains the self-renewal property of innate -like B lymphocyes. J Immunol. 2020;204:3262–72.

    CAS  PubMed  Google Scholar 

  19. Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene Mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol. 2004;32:571–8.

    CAS  PubMed  Google Scholar 

  20. Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H, et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell. 2010;6:279–86.

    CAS  PubMed  Google Scholar 

  21. Liu X, Wei W, Li X, Shen P, Ju D, Wang Z, et al. BMI1 and MEL18 promote colitis-associated cancer in mice via REG3B and STAT3. Gastroenterology. 2017;153:1607–20.

    CAS  PubMed  Google Scholar 

  22. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009;4:37–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen S, Gao R, Yao C, Kobayashi M, Liu SZ, Yoder MC, et al. Genotoxic stresses promotes the clonal expansion of hematopoietic stem cells expressing mutant p53. Leukemia. 2018;32:850–4.

    CAS  PubMed  Google Scholar 

  24. Chen S, Wang Q, Yu H, Capitano ML, Vemula S, Nabinger SC, et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun. 2019;10:5649.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.

    CAS  PubMed  Google Scholar 

  27. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21.29.1–9.

    PubMed  Google Scholar 

  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu T. Use model-based analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol. 2014;1150:81–95.

    CAS  PubMed  Google Scholar 

  32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  33. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma. 2011;12:35.

    Google Scholar 

  34. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinforma. 2010;11:237.

    Google Scholar 

  35. Levine SL, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol. 2002;22:6070–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Parreno V, Martinez AM, Cavalli G. Mechanisms of polycomb group protein function in cancer. Cell Res. 2022;32:231–53.

    PubMed  PubMed Central  Google Scholar 

  37. Grubach L, Juhl-Christensen C, Rethmeier A, Olesen LH, Aggerholm A, Hokland P, et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur J Haematol. 2008;81:112–22.

  38. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109:39–45.

    CAS  PubMed  Google Scholar 

  39. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and polycomb-group gene Bmi-1 regulates cell proliferation and senescence through the Ink4a Locus. Nature. 1999;397:164–8.

    CAS  PubMed  Google Scholar 

  40. Oguro H, Iwama A, Morita Y, Kamijo T, van Lohuizen M, Nakauchi H. Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med. 2006;203:2247–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu M, Mazor T, Huang H, Huang HT, Kathrein K, Woo AJ, et al. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell. 2012;45:330–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8.

    CAS  PubMed  Google Scholar 

  43. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77:840–56.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kajiume T, Ohno N, Sera Y, Kawahara Y, Yuge L, Kobayashi M. Reciprocal expression of Bmi1 and Mel-18 is associated with functioning of primitive hematopoietic cells. Exp Hematol. 2009;37:857–66.e2.

    CAS  PubMed  Google Scholar 

  45. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.

    CAS  PubMed  Google Scholar 

  46. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    CAS  PubMed  Google Scholar 

  47. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005;20:845–54.

    CAS  PubMed  Google Scholar 

  48. Scelfo A, Fernández-Pérez D, Tamburri S, Zanotti M, Lavarone E, Soldi M, et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent-and RING1A/B-independent-specific activities. Mol Cell. 2019;74:1037–52.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM, et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol Cell. 2019;74:1020–36.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Flow Cytometry Core, Pathology Core, NU Seq core, Quantitative Data Science Core, and Center for Comparative Medicine at Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center. This work was supported by R01 HL150624, R56 DK119524, R56 AG052501, DoD W81XWH-18-1-0265, and DoD W81XWH-19-1-0575 awards (to YL). This work was supported in part by the Leukemia & Lymphoma Society (LLS) Translational Research Program award 6581-20 and the St. Baldrick’s Foundation Scholar Award (to YL). SC was supported by the LLS Career Development Special Fellow Award, American Society of Hematology (ASH) Research Restart Award, and Lady Tata Memorial International Awards for Research in Leukaemia. SB was supported by a NIH F31 Award F31HL160120.

Author information

Authors and Affiliations

Authors

Contributions

WC, SC, and YL designed the research. WC, XL, SB, SX, SV, HC, YY, CB, DH, YJ, MH, TMM, and SC performed the research; WC, SL, JW, FY, SC, and YL analyzed the data and performed the statistical analysis. MLC, HL, PJ, ZG, DP, LCP, and RX provided reagents and constructive advice to the study. WC, SC, and YL wrote the manuscript. All authors read, comment on, and approved the manuscript.

Corresponding authors

Correspondence to Sisi Chen or Yan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. We have complied with all the relevant ethical regulations for animal testing and research. All animal-related experiments have received ethical approval from both Indiana and Northwestern University Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Liu, X., Barajas, S. et al. Polycomb group protein Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of self-renewal and proliferation genes. Leukemia 39, 296–307 (2025). https://doi.org/10.1038/s41375-024-02462-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02462-w

Search

Quick links