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TO THE EDITOR:
Chimeric Antigen Receptor (CAR) T-cell therapy is a potent
immunotherapy for B cell malignancies, employing genetically
engineered T cells to target CD19 [1]. Despite high response rates,
it is associated with toxicities like cytokine release syndrome (CRS)
and immune effector cell-associated neurotoxicity syndrome
(ICANS), which can be life-threatening [2–4]. CRS, the most
common adverse event, presents with fever and chills and
requires early intervention with Tocilizumab and steroids [3].
ICANS, observed in up to 64% of clinical trial patients [5], manifests
as somnolence and cognitive impairment [6, 7]. Risk factors
include CRS, high tumor burden, and pre-existing neurological
conditions, but reliable biomarkers to predict ICANS severity
remain limited, complicating early intervention [8].
The present study retrospectively analyzed residual cerebrospinal

fluid (CSF) samples collected prior to CAR-T therapy from 29
patients with B-cell non-Hodgkin lymphoma (Supplementary
Tables S1), defining them as an exploratory cohort; Tisagenlecleucel
(Tisa-cel, n= 10) [9], Axicabtagene ciloleucel (Axi-cel, n= 12) [10],
and Lisocabtagen maraleucel (Liso-cel, n= 7) [11] were used,
respectively. Among the 29 enrolled cases, 3 and 8 patients
developed grade 1 and grade 2 to 4 ICANS, respectively (grade 1 or
higher, categorized as ICANS-positive in this study, Supplementary
Table S1) based on the ASTCT Consensus Grading [12] combined
with MRI and EEG assessments. All the patients in our first cohort
experienced CRS, and ~90% of the patients received tocilizumab
and/or corticosteroids, which was not aimed at pre-emptive
interventions, before the diagnosis of ICANS. Of the 11 ICANS-
positive cases, 7 patients fully recovered from neurological
symptoms. However, one case, who developed grade 4 ICANS,
resulted in brain death, and the other with grade 2 ICANS died due
to lymphoma progression and sepsis (Supplementary Table S2).
Although the ICANS incidence rate appears high at 38% (11 out of
29 cases), it might be influenced by the non-random nature of

sample collection, which was determined by the availability of
residual CSF samples. There were no significant differences in terms
of age, gender, CAR-T products, CSF clinical test values including
total protein (TP), glucose (Glu), Na, K, LDH, and WBC between two
groups. No cases exhibited any signs for active CNS invasion or
infections (Supplementary Table S2). Severe CRS (grade 2 and 3) was
observed in 28% of ICANS-negative cases and in 63% ICANS-
positive cases although the difference was not statistically
significant (p= 0.989, Fisher’s exact test) (Supplementary Table S1).
As the experimental scheme shows (Fig. 1A), CSF proteins were

analyzed by data-independent acquisition mass spectrometry
(DIA-MS). The total number of proteins identified from all the
samples was 1,350, and principal component analysis (PCA) was
performed using the protein profiles. The PCA score plot identified
one sample as an “outlier” that exhibited an extraordinal shift from
the other samples (Supplementary Fig. S1A). The case showed an
abnormally high total protein level as a value of 498 mg/dL, likely
causing an artifact in the mass spectrometry measurement and a
significant reduction in the number of identified proteins
(Supplementary Fig. S1B). We then performed partial least squares
discriminant analysis (PLS-DA) with 28 samples excluding the case,
to discriminate the two groups of patients with and without
ICANS. A model constructed using score plots was able to separate
the two groups (Supplementary Fig. 1B) and the contribution of
each factor to this model is reflected in the VIP score
(Supplementary Table S3). The top 30 factors contributing to the
first component (Comp1) are visualized in a heat map (Fig. 1C). For
the top 100 factors contributing to both the first and second
components, STRING analysis was performed to visualize the
network among proteins to clarify their biological roles, and they
were divided into five clusters by the k-means method (Fig. 1D). In
addition, the factors in each cluster were subjected to Gene
Ontology (GO) enrichment analysis (Supplementary Table S4).
These clusters were annotated to biological pathways (Fig. 1D)
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such as hydrolytic enzyme functions acting on lysosomes or
glycosyl bonds (Cluster 1), complement activation or humoral
immunity (Cluster 2), LDL particle clearance (Cluster 3), and
extracellular matrix (Cluster 4), suggesting their involvement in the
development of ICANS. Notably, proteins belonging to Cluster 2,
including C1RL, C3, C4BPB, C5, and C9, which are integral to

complement activation, exhibited elevation in the ICANS-positive
group (Supplementary Fig. S2).
Next, we employed a strategy to find highly sensitive

biomarkers to predict the occurrence of ICANS shown in the
scheme (Fig. 2A). Among the 864 proteins identified commonly in
all the samples, 46 proteins were screened as candidate factors

Fig. 1 Cerebrospinal fluid (CSF) protein profiling and biological process extraction related to ICANS occurrence. A Proteomics and
statistics workflow. B The data obtained from CSF proteomics and clinical test values were subjected to supervised partial least square
discriminant analysis (PLS-DA) to classify the presence or absence of ICANS. The PLS-DA score plot demonstrated the separation between
ICANS-positive (n= 11, green) and ICANS-negative (n= 18, red) groups, with the first two latent variables accounting for 30.4% (Component 1)
and 8.7% (Component 2) of the total variance. Each dot represents an individual, and the ellipses correspond to the 95% confidence intervals
for each group. C The top 30 factors contributing to the first and second components in (B) are visualized in a clustered heatmap. D The top
100 protein contributors were subjected to STRING network analysis and classified into five clusters using the k-means method. Each cluster
was annotated with biological processes by gene ontology analysis (Supplementary Table S3). Cluster 1: Carbohydrate derivative catabolic
process. Cluster 2: Complement activation. Cluster 3: Chylomicron remnant clearance. Cluster 4: Extracellular matrix.
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(Supplementary Table S5) that met our criteria of signal intensity
thresholds (>1 × 105), single discriminant performance criteria
(AUC ≥ 0.6) (Supplementary Table S6), and p-values of t-test
(p < 0.05). Of these, 6 factors were increased in the ICANS-positive
group, while the remaining 40 were decreased. Therefore, a
composite ratio index (increased factor to decreased one) was
calculated, and its potential to discriminate between the ICANS-

positive and negative groups was evaluated along with its stand-
alone performance (Fig. 2B, Supplementary Table S7). There were
19 ratio factors with AUC values above 0.9, among which the
composite ratio of C1RL and FUCA2 discriminated ICANS-positive
and negative groups the most efficiently with an AUC value of
0.95 (95% confidence interval of 0.83–1.0) for the ROC curve
(Fig. 2C).
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To validate the ratio factors identified with the initial cohort,
we examined an extended cohort (n= 10, including 7 ICANS-
positive and 3 ICANS-negative subjects, Supplementary Table S1),
which comprised CSF samples collected from the different
department at the same hospital, and no participants overlapped
between the cohorts. The ratio factors were assessed for their
ability to distinguish between the two groups using ROC curves
(Fig. 2B). The C1RL/FUCA2 ratio factor, which exhibited the best
performance in the initial cohort, achieved an AUC of 1.0 (95% CI:
0.81–1.0), and the F12/FUCA2 ratio factor also demonstrated a
strong performance with an AUC (95% CI: 0.71–1.0), confirming
the reliability of these biomarkers to predict the occurrence of
ICANS. Both ratio values were significantly elevated in the
positive group compared to the negative group (Fig. 2C, D).
Previously, serum levels of neurofilament light chain (NfL) [13]
and plasma fibrinogen [6] were reported as biomarkers for
assessing the risk and severity of ICANS. However, their
discriminative abilities appeared to be modest, with AUC values
of 0.71 for NfL and 0.724 for fibrinogen, respectively. In contrast,
the CSF biomarkers investigated in this study exhibited remark-
able performance with an AUC of 0.95, significantly outweighing
previously reported biomarkers. The issue of whether our CSF
biomarkers correlate with blood levels remains unaddressed.
Identifying blood biomarkers that correlate with and are
comparable to the CSF biomarkers may facilitate the develop-
ment of more non-invasive and convenient laboratory testing
methods.
To investigate the molecular mechanisms underlying ICANS

pathogenesis (Supplementary Fig. S3A), PLS-DA was performed on
10 samples from the second cohort, revealing clear group
separation (Supplementary Fig. S3B). Contributing factors from
the first component (Supplementary Table S3) identified
153 shared between the two cohorts (Supplementary Fig. S3C,
Supplementary Table S8). A STRING network GO analysis identified
three significant clusters (Supplementary Fig. S3D–G, Supplemen-
tary Table S4), notably cluster 2 (Supplementary Fig. S3F), which
highlighted complement activation involving C1RL and other
complement factors (Supplementary Fig. S2). There findings
suggest that complement pathway activation plays a role in
ICANS pathogenesis and represent a potential therapeutic target.
Further analysis is needed to clarify the contributions of these
factors and pathways, with emerging complement-targeting
drugs offering a promising avenue for treatment [14].
Several studies have reported variations in the incidence of

ICANS among different CAR-T products [4, 9–11]. To address the
possibility that protein profiles or risk factors may differ
depending on the CAR-T products used, we conducted an
additional analysis to explore these differences, while acknowl-
edging the limitations of the small sample size. We reanalyzed the
CSF proteomics profiles in the first cohort, stratified by CAR-T
product types. The PCA score plot revealed no distinct clustering
corresponding to the three CAR-T products (Supplementary
Fig. S4A), and ANOVA analysis identified no significant differences
in protein abundance among the groups (Supplementary Fig. S4B).
Moreover, biomarker performance of the C1RL/FUCA2 and F12/

FUCA2 ratio factors remained still high within both the Axi-cel and
non-Axi-cel sub-cohorts (Supplementary Fig. S4C). While these
results suggest that differences of the CAR-T products do not
substantially influence the performance of the identified biomar-
kers, further studies with larger sample sizes are needed to
confirm these findings.
Increasing evidence suggests that myeloid cells contribute to

the pathogenesis of ICANS following CAR T-cell therapy. In our
analysis, CSF nuclear cell counts in all the cases were normal (1-2
cells/µL), preventing identification of the dominant cell type.
However, previous studies report increased CD14+ myeloid cells
in severe ICANS [15], highlighting the need to explore their role in
its pathophysiology in future studies.
Given the retrospective nature and small sample size of this

study, a prospective trial with a larger cohort is needed to confirm
the findings, explore differences among CAR-T products, and
validate biomarker accuracy in relation to ICANS severity. In
conclusion, our study identifies highly discriminatory CSF biomar-
kers for ICANS prediction, offering insights into its pathogenesis
and the potential to optimize CAR-T therapy by enhancing efficacy
and reducing adverse effects.
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