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On-chip single-mode CdS nanowire laser
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Abstract
By integrating a free-standing cadmium sulfide (CdS) nanowire onto a silicon nitride (SiN) photonic chip, we
demonstrate a highly compact on-chip single-mode CdS nanowire laser. The mode selection is realized using a Mach-
Zehnder interferometer (MZI) structure. When the pumping intensity exceeds the lasing threshold of 4.9 kW/cm2, on-
chip single-mode lasing at ~518.9 nm is achieved with a linewidth of 0.1 nm and a side-mode suppression ratio of up
to a factor of 20 (13 dB). The output of the nanowire laser is channelled into an on-chip SiN waveguide with high
efficiency (up to 58%) by evanescent coupling, and the directional coupling ratio between the two output ports can
be varied from 90 to 10% by predesigning the coupling length of the SiN waveguide. Our results open new
opportunities for both nanowire photonic devices and on-chip light sources and may pave the way towards a new
category of hybrid nanolasers for chip-integrated applications.

In the past decade, owing to its great potential ranging
from optical communications1,2, sensing3, and computing
to quantum information technology4, on-chip nanopho-
tonics has attracted increasing attention for the realization
of integrated photonic circuits with faster operation,
broader bandwidth, lower power consumption and higher
compactness5–7. While a number of on-chip nanopho-
tonic devices and circuits have been successfully fabri-
cated using a complementary metal-oxide semiconductor
(CMOS)-compatible technique8, on-chip light sources
remain challenging9,10. On the other hand, bottom-up
grown semiconductor nanowires have long been used for
nanoscale waveguide lasers11. Benefitting from their
diverse material availability and large tolerance to lattice
mismatch for bandgap engineering12–15, nanowire lasers
can now cover a broad spectral range from the ultraviolet
to near-infra-red ranges16,17, with a number of additional
advantages including compact footprints, waveguide
mode quality, and excellent stability18–20.
In recent years, increasing attention has been paid to the

integration of active nanowires with on-chip planar

waveguides for on-chip light sources21–25. However, due to
the large discrepancy in fabrication techniques, refractive
index and geometric compatibility between a freestanding
nanowire and an on-chip planar waveguide, a variety of
issues, including a relatively low coupling efficiency, ineffec-
tive mode selection and low reproductivity, have yet to be
addressed.
Relying on a highly efficient and repeatable near-field

coupling approach for on-chip integration of single
nanowires26, we demonstrate an on-chip cadmium sulfide
(CdS) nanowire laser with high coupling efficiency and
stability. Moreover, by forming a hybrid Mach-Zehnder
interferometer (MZI) for mode selection, we operate the
laser in the single-mode regime with a side-mode sup-
pression ratio of up to a factor of 20 (13 dB). Different
directional output ratios have also been achieved by pre-
designing the coupling length of the waveguide bends.
The structural design of the on-chip nanowire laser is

schematically illustrated in Fig. 1a. A CdS nanowire is
used as the gain material and is evanescently coupled to
an Ω-shaped silicon nitride (SiN) waveguide at both sides
to form a hybrid MZI structure. In the coupling area, SiN
waveguide bends are predesigned to ensure a high cou-
pling efficiency with excellent reproducibility26. The
overall size of the hybrid MZI structure is kept below
100 μm. The free spectral range (FSR) of the MZI is
designed to be ~1.5 nm to ensure single-mode operation.
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Fibre-to-chip grating couplers are designed at both ends
of the SiN waveguide, which couple the laser signal from
the on-chip SiN waveguide into standard optical fibres for
optical characterization.
A micromanipulation process under an optical micro-

scope (Supplementary Fig. S1) is used to integrate a CdS
nanowire onto a SiN chip to form a hybrid MZI structure
with excellent reproducibility. Figure 1b shows a scanning
electron microscope (SEM) image of a typical hybrid MZI
structure. The lengths of the CdS-nanowire arm (the
partial length of the nanowire between the two coupling
areas) and the SiN-waveguide arm are ~50 and 73 μm,
respectively, and the coupling length of the identical SiN-
waveguide bends at both sides is preset to 2.0 μm, leading
to a calculated coupling efficiency of 90% for a 150-nm-
diameter CdS nanowire. Figure 1c shows the measure-
ment setup that uses output fibres to collect signals out of
the chip via fibre-to-chip grating couplers.
To investigate the lasing activity of the hybrid MZI

structure, we pump the CdS nanowire using 355-nm-
wavelength laser pulses (duration of 3.5 ns and repetition
rate of 1 kHz) above the laser threshold and measure the
lasing output from one end of the nanowire. Before
coupling the nanowire to the SiN waveguide, the lasing
oscillation in the nanowire relies solely on the F-P cavity
formed by the reflection from both ends of the nanowire
(Fig. 2a), resulting in multimode lasing emission (Fig. 2b).

When one side of the nanowire is coupled to the SiN
waveguide (Fig. 2c), a coupling-induced spectral filtering
effect27 may occur that produces higher loss at longer
wavelengths, and additional cavities may also be intro-
duced in the CdS nanowire for mode selection (Supple-
mentary Fig. S2), resulting in a decrease in the mode
numbers (Fig. 2d). Finally, when both sides of the nano-
wire are coupled to the SiN waveguide (Fig. 2e), an MZI
structure is formed, which selects only one dominant
lasing mode (Fig. 2f) by suppressing all other modes
within the lasing spectral range (Supplementary Fig. S3),
clearly showing the effectiveness of the mode selection for
on-chip single-mode lasing operation.
To characterize the on-chip nanowire laser, we measure

the lasing output from the SiN waveguide via fibre-to-chip
grating couplers. As shown in Fig. 3a, under optical
excitation, green-colour light emission from both sides of
the nanowire endfaces and the grating couplers is clearly
observed. Above the lasing threshold, the measured
spectra clearly show the single-mode lasing feature
(Fig. 3b). The dominant lasing peak is centred at a
wavelength of ~518.9 nm with a linewidth of ~0.1 nm.
The side-mode suppression ratio increases with increas-
ing pumping intensity and realizes a maximum value of
approximately a factor of 20 (13 dB) at the maximum
pumping intensity of 5.2 kW/cm2. The dependence of the
lasing output on the pumping intensity (Fig. 3c) shows
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Fig. 1 Configuration of the on-chip single-mode nanowire laser based on a hybrid MZI structure. a Schematic diagram and b SEM image of a
hybrid MZI structure. The fibre-to-chip grating couplers in (a) are designed for coupling the laser signal into output optical fibres for optical
characterization. c Optical image of the measurement setup under an optical microscope.
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that the lasing threshold of the on-chip nanowire laser
(∼4.9 kW/cm2) is slightly higher than that of the nanowire
before coupling (∼4.7 kW/cm2), which is due to the
insertion loss of the MZI for mode selection. Meanwhile,
by comparing the lasing output intensities from the
nanowire end and the grating area (Supplementary Fig. S4),
we estimate the fractional lasing power channelled into the
SiN waveguide to be ~58%, which is much higher than
previous results obtained with on-chip integrated nanowire
lasers or nanowire-based light emission devices21–25 and
can be further improved by optimizing the coupling effi-
ciency between the nanowire and the SiN waveguide.
By changing the coupling efficiency between the nanowire

and the SiN waveguide and forming an asymmetric MZI
lasing structure, it is also possible to adjust the ratio of the

laser powers between the two directions along the SiN
waveguide. To show this adjustment, we fabricate an
asymmetric MZI structure with different coupling lengths
for the two SiN waveguide bends that determine the cou-
pling efficiency. Figure 4 shows a typical asymmetric MZI
structure designed (Fig. 4a) and fabricated (Fig. 4b) for this
purpose. The coupling lengths of the left and right SiN
waveguide bends are 3.0 μm and 2.0 μm, respectively, and
the CdS nanowire is 150 nm in diameter and 25 μm in
length. When the asymmetric MZI structure is pumped
above the threshold, the structure lases at 513.7 nm (Fig. 4c)
with different output intensities for the left- and right-side
gratings (Fig. 4d, e). Here, the right-side coupler achieves a
coupling efficiency of ∼90% (preset value from the calcu-
lation) in channelling light from the nanowire into the SiN
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Fig. 2 Optical characterization of a lasing CdS nanowire in different stages of the integration process. The nanowire is 300 nm in diameter
and 68 μm in length and is (a, b) uncoupled, (c, d) coupled at one side, and (e, f) coupled at both sides to a SiN waveguide. a, c, e Optical microscope
images. b, d, f Lasing spectra.
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Fig. 3 Optical characterization of an on-chip CdS nanowire laser. The nanowire is 200 nm in diameter and 65 μm in length. a Optical image of a
hybrid MZI structure under excitation. b Lasing spectra obtained at different pumping intensities above the threshold. c Dependence of the lasing
output on the pumping intensity of the excited CdS nanowire for the coupled (red) and uncoupled (black) cases.
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Fig. 4 On-chip single-mode nanowire laser with an asymmetric output. a Numerical simulation of the coupling efficiency of an asymmetric MZI
structure with different coupling lengths. b SEM image of an as-fabricated asymmetric MZI structure. c Lasing spectrum of the asymmetric-MZI-based
on-chip nanowire laser. Inset: pump-intensity-dependent output intensity of the laser. d, e Optical microscope images of the laser under excitation
with (upper) and without (bottom) the illumination light.
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waveguide, and the left-side coupler is overcoupled (Sup-
plementary Fig. S5) with a much lower efficiency (∼27%),
resulting in an asymmetric output intensity between the
two gratings (Fig. 4d, e). The measured ratio between the
right and left grating outputs is approximately 10:1, which
can be readily varied between 0.1:1 to 10:1 by adjusting the
coupling lengths of the SiN waveguide bends.
In conclusion, based on a hybrid MZI structure inte-

grating a CdS nanowire and a SiN waveguide, we have
demonstrated a new approach for on-chip lasers. Com-
pared with previously reported chip-integrated nanowire
lasers, the laser demonstrated here achieves much higher
efficiency and can be operated in the single-mode regime
with a small footprint and high flexibility. Benefitting from
the great diversity of the available nanowire materials17

and high flexibility for bandgap engineering14,15, the on-
chip integration scheme demonstrated here can be readily
extended to realize on-chip nanolasers from the ultra-
violet to near-infra-red ranges, which may offer new
opportunities for both semiconductor nanowires and on-
chip photonic devices. For example, recently, free-
standing single CdS nanowires have been used for
refractive index28 and intracellular optical sensing29, and
the on-chip single-mode nanowire laser may thus offer an
opportunity to develop on-chip physical and biochemical
optical sensors with higher stability and compactness.
Experimentally, on-chip SiN waveguides are fabricated on a

SiN wafer using electron beam lithography and subsequent
dry etching. The as-fabricated SiN waveguides are typically
300 nm in width and 250 nm in height, with a measured
waveguiding loss of less than 1 dB/cm. The CdS nanowires
are synthesized using a chemical vapour deposition method30,
which have excellent uniformities with available diameters
ranging from 100 to 500 nm (Supplementary Fig. S6).
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