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Deep self-learning enables fast, high-fidelity
isotropic resolution restoration for volumetric
fluorescence microscopy
Kefu Ning 1,2,3, Bolin Lu1,2,3, Xiaojun Wang 1,2,4, Xiaoyu Zhang1,2, Shuo Nie1,2, Tao Jiang3, Anan Li 1,2,3,
Guoqing Fan 1,2, Xiaofeng Wang3, Qingming Luo1,2,3,4, Hui Gong1,2,3✉ and Jing Yuan 1,2,3✉

Abstract
One intrinsic yet critical issue that troubles the field of fluorescence microscopy ever since its introduction is the
unmatched resolution in the lateral and axial directions (i.e., resolution anisotropy), which severely deteriorates the
quality, reconstruction, and analysis of 3D volume images. By leveraging the natural anisotropy, we present a deep
self-learning method termed Self-Net that significantly improves the resolution of axial images by using the lateral
images from the same raw dataset as rational targets. By incorporating unsupervised learning for realistic anisotropic
degradation and supervised learning for high-fidelity isotropic recovery, our method can effectively suppress the
hallucination with substantially enhanced image quality compared to previously reported methods. In the
experiments, we show that Self-Net can reconstruct high-fidelity isotropic 3D images from organelle to tissue levels via
raw images from various microscopy platforms, e.g., wide-field, laser-scanning, or super-resolution microscopy. For the
first time, Self-Net enables isotropic whole-brain imaging at a voxel resolution of 0.2 × 0.2 × 0.2 μm3, which addresses
the last-mile problem of data quality in single-neuron morphology visualization and reconstruction with minimal effort
and cost. Overall, Self-Net is a promising approach to overcoming the inherent resolution anisotropy for all classes of
3D fluorescence microscopy.

Introduction
Volumetric fluorescence microscopy is an indispensable

tool for comprehensive studies of cells and organs. Since
the specimens are inherently three-dimensional (3D), the
optimal imaging system should possess high spatial
resolution in all directions1,2. However, limited by the
operation principle, most microscopic imaging modalities
suffer from an anisotropic point spread function (PSF)3,
i.e., the axial resolution is worse than the lateral resolution

by two to three times, which severely hinders the accurate
visualization as well as dissection and analysis of complex
volumetric structures inside the biological samples. For
example, the resolution anisotropy causes great challenges
in reconstructing complex single-neuron morphologies
for high-resolution (HR) whole-brain imaging4–6 owing to
the inability to accurately distinguish individual neurites
and judge their connections in densely-packed regions7.
As the multiple neurites of different neurons, sometimes
of a single neuron, frequently interweave in 3D local
space, it is highly desired to observe such data from
multiple perspectives for accurate reconstruction. How-
ever, the poor Z-resolution of the raw data restricts such
observability, leading to a high frequency of false links.
The high error rate in local complex areas could finally
lead to severe reconstruction errors of the whole neuron
morphology, making the subsequent analyses unreliable.
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Although some advanced hardware modalities allow 3D
imaging at an isotropic resolution8–14, these approaches
are relatively sophisticated, restricting their wide applic-
ability. As a leading data-driven approach, deep learning
may provide an attractive computational alternative. The
key to this scheme is to solve the 3D anisotropy of the
non-spherical optical PSF. Recently, deep learning has
been demonstrated to be very effective and applicable in
overcoming other inherent drawbacks and alleviating
performance tradeoffs in fluorescence microscopy15–23.
The common strategy for training deep neural networks is
supervised learning on a large set of well-registered
training pairs. However, for isotropic recovery, it is
extremely difficult to acquire precisely-matched training
data with routine microscopes. Although training data
can be generated semi-synthetically, e.g., content-aware
image restoration (CARE)24, this approach requires the
estimation of the system PSF and the performance highly
depends on the accuracy of the physical model for gen-
erating paired training data. Recently, the invention of a
cycle-consistent generative adversarial network (Cycle-
GAN) has made it possible to train neural networks using
unpaired data25. A newly reported work has employed the
3D optimal transport-driven CycleGAN network (OT-
CycleGAN) for isotropic recovery of several volumetric
imaging data26. However, training this big 3D network is
not trivial. It requires large memory consumption and a
long time for training and inference. More importantly,
the problem of anisotropy correction is specific as it
requires high-fidelity output but not a simple style
transfer. Therefore, only using the weak constraint
introduced by cycle consistency is prone to generate noise
artifacts and structural distortion in the output images
when directly learning the image transformation from the
anisotropic domain to the isotropic domain, bringing risks
to real biomedical applications27.
Here, we present a general-purpose two-stage deep self-

learning approach termed Self-Net to improve the reso-
lution isotropy for volumetric fluorescence microscopy
with fast training and inference speed as well as high
reconstruction fidelity. Our approach employs the self-
learning strategy that improves the axial resolution of the
anisotropic raw data by using the HR lateral images in the
same dataset as rational targets. This strategy fully
exploits the 3D distribution characteristics of the system
PSF and eliminates the need for acquiring registered
training data or physically modeling the image formation
process. Distinct from the previous approaches, Self-Net
employs unsupervised learning for realistic anisotropic
degradation, thus allowing the construction of supervised
training to impose a strong constraint on the isotropic
restoration results, to ensure high-fidelity reconstruction.
We validate the reliability and effectiveness of Self-Net
using both simulated and experimentally acquired data.

We demonstrate that Self-Net overcomes the resolution
anisotropy of wide-field, optical-sectioning, and super-
resolution microscopies through volumetric imaging of
diverse samples. Furthermore, the high effectiveness and
applicability of Self-Net enable a time- and data-efficient
pipeline to achieve isotropic whole-brain imaging (Dee-
pIsoBrain) at a voxel resolution of 0.2 × 0.2 × 0.2 μm3,
which significantly improves the reconstruction efficiency
and accuracy of complex single-neuron morphology and
can be a promising approach to facilitate morphology-
based neuroscience research.

Results
Two-stage self-learning strategy and performance
validation of Self-Net
Figure 1a illustrates the two-stage self-learning strategy

of Self-Net. Instead of viewing each 3D data as an
entirety, we sliced it into 2D image sets containing
multiple lateral and axial planes. The HR lateral images
naturally served as the rational gold standard for
enhancing the axial resolution of the raw data due to the
anisotropy of the optical PSF. Therefore, we directly
utilized unpaired lateral and axial images retrieved from
the same anisotropic volume to learn the axial-to-lateral
mappings through unsupervised training. In this way, a
single raw image stack is sufficient for network training.
To overcome the hallucination problem owing to the
weak constraint in the previous CycleGAN-based
unsupervised approach, we employed unsupervised
training to learn transformation from the HR lateral
images to the blurred axial images instead of directly
reconstructing HR images as did in previous approaches.
This is based on our finding that in unpaired settings,
networks learn image degradation better and are more
stable than image deblurring (Fig. S1). With the help of
realistic anisotropic PSF blurring, we were able to con-
struct supervised training to impose a strong constraint
on the isotropic restoration results, thereby ensuring the
output was unaffected by hallucinatory features. The
workflow of Self-Net is as follows: In the first stage,
unpaired lateral and axial slices obtained from the same
image stack were fed into the CycleGAN model to learn
the anisotropic degradation process. Due to the lower
sampling rate in the axial direction (than in the lateral
directions), we downsampled the lateral images to
reduce the resolution gap between the lateral and axial
views. This process also helped the networks focus on
learning the anisotropic PSF. In the second stage, the
blurred axial images generated by the first-stage network
combined with pixel-aligned HR lateral images were
used to train the isotropic recovery network (named
DeblurNet) through pixel-wise reconstruction loss.
Finally, we established feedback between these two
stages so that the training loss of DeblurNet can guide
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Fig. 1 (See legend on next page.)
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the first-stage module to generate more realistic blurred
images. We alternately optimized the two stages until
both converge. In the testing phase, isotropic restoration
was realized by loading the DeblurNet to enhance all
axial slices in the original image stack (Fig. S2).
We verified the isotropic recovery performance of Self-

Net using simulated fluorescence beads. We used their
image stack as ground truth (GT) data and convolved them
with a theoretical wide-field 3D PSF that exhibited a lateral
full-width-at-half-maximum (FWHM) of 305 nm and an
axial FWHM of 1000 nm. For comparison, we trained Self-
Net and OT-CycleGAN using this anisotropic data (Fig. 1b,
c). The axial elongation of the PSF severely distorted objects
and caused weak signals to be obscured in the raw data. The
output of the OT-CycleGAN network exhibited improved
axial resolution, but compared with GT, the restored beads
still had obvious deviations in shape and intensity. In con-
trast, our Self-Net effectively removed the axial blur from
the raw image stack and provided an isotropic restoration
consistent with the GT data (Supplementary Video 1).
We also generated and tested synthetic tubular volumes

for performance validation, as did in ref. 26 (Fig. 1d;
Methods). The OT-CycleGAN produced visually-
enhanced output, but many details were inconsistent
with the GT (as highlighted by yellow arrowheads in Fig.
1d). Our Self-Net generated high-fidelity reconstructions
that matched well with the GT data. For quantitative
comparison, we measured the root-mean-square error
(RMSE) and the structural similarity index (SSIM)
between the restored images and the GT (Fig. 1e). The
results showed that Self-Net yielded notably higher image
quality metrics than OT-CycleGAN. Moreover, compared
to large 3D networks of OT-CycleGAN, our Self-Net has
10× fewer parameters and is 20× and 5× faster in training
and inference time, respectively (Fig. 1f), which indicates
that our Self-Net is fast, compact, and easily optimizable.
We next compared the performance of Self-Net under

supervised and unsupervised settings using semisynthetic
image data (Fig. 1g and S3; Methods). Note that, the

supervised training can be regarded as the replication of
the CARE method24 under the ideal condition (i.e., the
lateral-to-axial degradation process is accurately mod-
eled). We show that both networks provided resolution-
enhanced images that suitably matched the GT data. The
comparable RMSE and SSIM metrics of Self-Net with
CARE (Fig. 1h) demonstrated that the network still
learned to perform effective anisotropy correction even
without paired data. We also evaluated the effect of dif-
ferent extents of resolution anisotropy on the isotropic
recovery performance of the networks (Fig. S4). The
results showed that in all cases, both CARE and Self-Net
had considerable resolution improvement compared to
the input. And like all deep-learning methods, the per-
formance of Self-Net degraded at increasing anisotropy
and when the gap in lateral and axial resolution is greater
than 4 times, the deterioration became particularly
obvious.

Self-Net improves resolution isotropy in 3D imaging of
biological tissues
We verified the isotropic restoration performance of our

Self-Net on real biological data acquired by commercial
wide-field, two-photon, confocal, and light-sheet micro-
scopes. Detailed information on all the training data is
available in Supplementary Table 1. The images of the
mouse liver (Fig. 2a), kidney (Fig. 2b), brain vessels
(Fig. 2c, raw data were released by ref. 28), and neurons
(Fig. 2d) all exhibited significant improvement in the axial
resolution after Self-Net restoration (Supplementary
Video 2). Fine structures such as microvascular archi-
tecture, glomerular tufts, and dendrite spines can now be
visualized in the axial views. We also made a comparison
with the OT-CycleGAN network and showed that our
Self-Net had obvious improvement in restoration quality.
To intuitively demonstrate the resolution enhancement,
we performed Fourier spectrum analysis and FWHM
analysis (please also refer to Fig. S5) and quantified the
isotropy improvement of each data (Fig. S6 and

(see figure on previous page)
Fig. 1 Self-Net pipeline and validation of its isotropic recovery performance using synthetic and semisynthetic data. a Self-learning strategy
and schematic of Self-Net. b First row: XZ maximum-intensity projections (MIPs) of the raw anisotropic data, isotropic ground truth (GT) data, OT-
CycleGAN, and Self-Net restorations of simulated fluorescence beads. The projection thickness is 50 μm. Second row: corresponding color-merged
images by merging the data (magenta) and GT (green). The insets show enlarged views of the corresponding dashed boxes. Scale bar: 5 μm; 1 μm for
the insets. c Intensity profiles along the corresponding colored lines in the insets in (b). d First row: XZ MIPs of the raw anisotropic data, isotropic GT
data, OT-CycleGAN, and Self-Net restorations of synthetic tubular volume. The projection thickness is 30 slices. The yellow arrowheads highlight the
details inconsistent with the GT data in the OT-CycleGAN output. Second row: corresponding color-merged images by merging the data (magenta)
and GT (green). Scale bar: 20 pixels. e Quantitative comparison of the image qualities of d via the RMSE and the SSIM. Results are obtained from five
randomly-selected MIP images of 900 × 900 pixels. f Comparison of model size, training time, and inference time between the OT-CycleGAN and Self-
Net using the same GPU card (GeForce RTX 3090, Nvidia). The inference time was evaluated using a 7003 voxels volume. g MIPs of the raw image
stack (top right: PSF kernel used to generate anisotropic blurring), GT image stack, CARE restoration (supervised learning), and Self-Net restoration
(unsupervised learning) of semisynthetic neuronal data. The projection thickness is 300 μm. Normalized intensity profiles along the corresponding
white dashed lines in the enlarged images are shown in the bottom-left corner of the images. Scale bar: 10 μm; 5 μm for the enlarged images.
h Quantitative comparison of the image qualities of g via RMSE and SSIM (n= 5 independent image stacks)
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Supplementary Table 2). Moreover, we demonstrated that
Self-Net can be applied to imaging data with signal
attenuation and non-uniform PSF blurring with depth
(Fig. S7). These results demonstrated that Self-Net has the
capability to improve the resolution isotropy of various
microscopy and help better observe and analyze 3D
morphologies of tissues and organs from any perspective.

Application of Self-Net in super-resolution volumetric
microscopy
Achieving high isotropic resolution beyond the diffraction

limit is still technically challenging at present. Here, we
demonstrated the unique capability of Self-Net to tackle this
problem. For example, although the 3D stimulated emission
depletion (STED) microscopy29 can provide subdiffraction
Z-resolution by superimposing a ‘bottle-shaped’ beam, the
finite budget of laser power for 3D depletion leads to a
performance tradeoff between the lateral and axial resolu-
tions. To demonstrate this, we imaged fluorescent nano-
beads in 3D using a commercial STED system (Abberior
Facility Line; Fig. 3a–c). To enhance the signal-to-noise

ratio, the imaged data were deconvolved using the
Richardson–Lucy (RL) algorithm30,31 with iterations of 5.
We used the mode of 100% Z-depletion power to achieve
Z-STED imaging and obtained the lateral and axial resolu-
tions of 97.3 ± 5.7 nm (mean ± standard deviation) and
82.0 ± 5.1 nm, respectively. Then, we used 70% XY-depletion
power and 30% Z-depletion power to obtain a relatively high
lateral resolution of 49.8 ± 2.3 nm by sacrificing the axial
resolution to 133.2 ± 6.7 nm. We recovered this STED data
to nearly isotropic resolution (49.6 ± 1.4 nm laterally and
58.7 ± 2.5 nm axially) by Self-Net processing and showed
twofold lateral and 1.4-fold axial resolution improvements
compared to conventional Z-STED imaging (Supplementary
Video 3). This result confirms that Self-Net can push the
limit of 3D STED with limited depletion power.
As another representative super-resolution microscopy,

3D structured illumination microscopy (SIM) also suffers
from resolution anisotropy32 (very few modified techni-
ques allow for isotropic acquisitions33,34). To test the
ability of Self-Net to overcome this defect, we used pre-
viously released instant SIM (iSIM)35 imaging data of
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fixed U2OS cells transfected with mEmerald-Tomm20
labeling outer mitochondrial membrane21. In the raw data
after deconvolution, mitochondria can be visualized in the
lateral views (Fig. 3d), but still were ambiguous in the axial
views (Fig. 3e). After Self-Net restoration, the fine struc-
tures of individual mitochondrion became super-resolved
in the axial direction (Fig. 3f and Supplementary Video 4).
The hollow structures of mitochondria (indicated by the
green arrowheads) that were blurry in the original axial
view (Fig. 3g) were resolved in the Self-Net reconstructed
image (Fig. 3h). We performed the FWHM analysis of
sub-diffractive objects in the images to quantify the 3D
optical resolutions and showed that Self-Net improved
the axial resolution from 344 ± 5 to 195 ± 7 nm, matching

the lateral resolution (189 ± 6 nm; Fig. 3i). These results
highlighted the potential of Self-Net to enable in live-cell
3D isotropic imaging and facilitate 3D visualization and
analysis of intracellular structures.

Self-Net enables fast and accurate morphology
reconstruction of densely-interweaving neurites
To test the reconstruction accuracy of Self-Net in a

concrete biological context, we applied Self-Net to
reconstruct the morphology of densely-packed neurites
via the isotropy improvement. In the first example, Self-
Net was used to enhance the imaging data of local
interneurons. Compared to other cells, interneurons
contain extremely dense axon arbors, leading to a highly
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difficult and painstaking reconstruction process36. We
demonstrated a typical axo-axonic cell (AAC) located in
the medial prefrontal cortex (Fig. 4a). Raw data were
acquired with a chemical sectioning fluorescence micro-
optical-sectioning tomography (CS-fMOST) system6 at a
voxel resolution of 0.2 × 0.2 × 1 μm3. The fivefold differ-
ence between the axial and lateral sampling rates severely
hampered the visualization and analysis of these complex
data in 3D view. Therefore, the reconstruction of these
neurons relied on careful manual tracing in 2D cross-
sectional views15; however, this slice-by-slice editing
process was time-consuming and unintuitive, requiring
approximately a week’s time for a skilled annotator to
trace a single AAC. To overcome this challenge, we
applied Self-Net for isotropic recovery to allow perform-
ing neuron tracing in 3D. The fine intermingled axon
fibers of the AACs were indistinguishable in the raw axial
views, but easily resolved in 3D after Self-Net restoration
(Fig. 4b, S8–S10, and Supplementary Video 5).
We also evaluated the CARE method24 as a comparison.

The CARE approach pioneered isotropic restoration with
semisynthetic training data. Since the accurate theoretical
model for degrading the lateral image slices into the real
axial image slices is hard to obtain in practice, we used the
approximate Gaussian degradation model to generate the
training data for implementing the CARE method
(Methods). We observed that the CARE method mitigated
the effects of PSF anisotropy to a certain extent, but
compared with Self-Net, the improvement remained
modest (Fig. 4c, d). The possible reason is that the
approximate Gaussian degradation model is not as accu-
rate as the degradation model directly learned by the
network trained with the real imaging data. In addition,
benefiting from the direct use of raw data for training,
Self-Net avoids the cumbersome process of generating
semisynthetic training data in the CARE workflow,
resulting in higher application efficiency. We calculated
the ratio of lateral to axial FWHM values of the neural
fibers as the isotropy ratio (Fig. 4e), and the color-coding
results intuitively demonstrated that Self-Net successfully
removed the PSF anisotropy of the raw data and out-
performed CARE. Self-Net reduced the axial FWHM
from 1.68 ± 0.32 to 0.86 ± 0.11 μm, matching the lateral
FWHM, and thus improved the isotropy ratio from
0.51 ± 0.10 to 0.91 ± 0.07. In contrast, the CARE network
yielded an isotropy ratio of 0.72 ± 0.11, which was sub-
stantially inferior to Self-Net (Fig. 4f).
To verify the benefits of the improved resolution iso-

tropy for downstream image analyses, we evaluated the
effectiveness of automatic skeleton extraction37 (Fig. 4g).
Using manually traced skeletons as the GT, we observed
that false line segments were common in the raw and
CARE data (indicated by the yellow arrowheads in Fig. 4g).
Benefiting from the high isotropy ratio and high fidelity,

skeleton extraction using Self-Net data yielded high pre-
cision reconstruction with center points close to GT. We
quantified the accuracy of these auto-extracted skeletons
through two standard evaluation metrics, the F1 score
(higher scores indicating better accuracy) and the entire
structure average38 (ESA; lower values indicating better
accuracy). The results showed that isotropic restoration
via Self-Net substantially improved the accuracy of the
automatic neuron extraction and the performance was
superior to the CARE approach (Fig. 4h). Manual revision
of auto-extracted neuron skeletons is highly required due
to the imperfection of full-automation neuron recon-
struction algorithms. We, therefore, further semi-manually
traced the complete morphology of the individual AACs
using the Self-Net data. The improved resolution for better
observing and analyzing the dense neurites allows us to
substantially reduce the tracing time of single complex
AAC to only 12 h, a nearly fourfold improvement over the
previous 2D reconstruction time using raw anisotropic
data36 (Supplementary Table 3).
In the second example, we applied Self-Net to restore

imaging data of dense neuron clusters, which commonly
existed in whole-brain neuron imaging (Fig. 4i). The axial
views of the raw data exhibited both low resolution and
contrast due to the high-fluorescence background in
dense areas. To improve them simultaneously, we
employed deconvolution39 to further suppress the out-of-
focus light in the Self-Net output. To accelerate this two-
step process, we trained an end-to-end network (denoted
as Self-Net+) using paired raw axial images and decon-
volved output images from Self-Net (Fig. S11; Methods).
Both Self-Net and Self-Net+ produced output data
with an enhanced axial resolution, while the output
of Self-Net+ demonstrated a threefold increase in the
signal-to-background ratio (SBR) over that of Self-Net
(Fig. 5j, k and Supplementary Video 6).
To demonstrate that the substantially improved image

quality produced by Self-Net+ can effectively facilitate
downstream analyses, we compared the accuracy and
efficiency of neurite tracing between the use of raw and
Self-Net+ data via the semiautomatic reconstruction
module of GTree software40. The results revealed that the
erroneously-traced fiber length decreased by 4 times (Fig. 4l)
and the tracing speed was increased by 53% (Fig. S12) on
average by using the Self-Net+ data. We showed two
typical reconstruction errors, proceeding along incorrect
branches and missing branches, resulting from the poor
Z-resolution and low contrast in the raw data (Fig. 4m, n
and Supplementary Videos 7, 8). In contrast, Self-Net+
provided high observability in all orientations and allowed
the annotators to readily identify the appropriate viewing
angle and determine the correct link patterns. In addition,
Self-Net+ also benefited the analysis of neuronal sub-
structures such as dendrite spines (Fig. S13). All these
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results indicated that Self-Net produced reliable isotropic
restoration and facilitated common downstream analyses.

DeepIsoBrain improves morphology reconstruction of
brain-wide long-range projection neurons
The success of Self-Net on local imaging data motivated

us to address the last-mile problem of data quality in the
morphology reconstructions of single neurons due to the
resolution anisotropy problem of HR whole-brain ima-
ging. The easy-to-train and high-fidelity characteristics of
Self-Net allow us to realize online training of an exclusive
network for each whole-brain dataset (Fig. 5a). This
strategy not only avoided the additional time for post-
training but also overcame the generalization problems of
traditional deep learning. We validated this strategy on
the HR whole-brain imaging of five mouse brain samples
with different fluorescence labels using different imaging
systems and showed that each exclusive Self-Net provided
nearly isotropic resolution (Supplementary Table 4). The
existence of densely tangled neurites is the key factor
limiting the accuracy and efficiency of single neuronal
reconstruction. The fast inference speed of Self-Net (1.2 s
for a 2003-voxels data block) enabled us to perform on-
demand isotropic resolution recovery of local challenging
data in real-time (Fig. 5b), thereby avoiding computa-
tionally intensive processing to restore the entire TB-size
imaging data. Specifically, to achieve this strategy, we
packaged the inference module of Self-Net and integrated
it with 3D neuron reconstruction software (e.g., GTree
software40; Supplementary Video 9), so that as the
annotators traverse each data cube along the extension
direction of the neurites, they can observe and reconstruct
densely-interweaving neurites with isotropic high resolu-
tion. We named the combination pipeline of the online
self-learning and on-demand isotropic recovery strategies
as the DeepIsoBrain method for providing isotropic
whole-brain imaging and facilitating single-neuron mor-
phology reconstruction.

To validate the feasibility of DeepIsoBrain, we imaged
and traced a whole mouse brain with sparsely labeled
pyramidal neurons in the primary somatosensory cortex
(S1). The raw data were acquired at the current highest
voxel resolution of 0.2 × 0.2 × 1 μm3 over 10 days (corre-
sponding to a raw data size of 22 TB). During imaging, we
randomly cropped an image stack (5003 voxels) contain-
ing abundant signals for online training of the Self-Net.
After the acquisition, we recruited five annotators to
reconstruct all 20 labeled neurons (Fig. S14) and manually
recorded areas requiring isotropic restoration. A total of
485 local cubes with 2003 voxels (Supplementary Video
10) were applied isotropic resolution enhancement, which
only accounted for 0.006 and 0.24% of the whole dataset
and traversed data during neuron reconstruction,
respectively (Fig. 5c). Obtaining the isotropic HR whole-
brain dataset with hardware or computational methods
would require an additional 576 and 2577 h, respectively,
over standard data acquisition (Fig. 5d). The data size
would also reach 110 TB per brain, exponentially
increasing the costs and difficulties in subsequent data
processing and analysis. In contrast, for DeepIsoBrain,
real-time restoration of all local complex areas only
required an additional computation time of 10min (four
orders of magnitude lower than before) and did not
require saving extra data in the process. Therefore, our
approach has successfully addressed the bottleneck pro-
blem of data quality in HR whole-brain imaging with
minimal effort and cost.
To further evaluate the necessity of isotropic resolution in

challenging areas during brain-wide neuron tracing, we
compared the tracing difficulties and accuracy between the
use of raw and Self-Net data. We randomly selected 50 local
areas of densely-interweaving neurites to generate a test
dataset of randomly-shuffled raw and Self-Net data. In this
blind study, we recruited three skilled annotators to inde-
pendently trace all test data. More than two levels of tracing
difficulty reduction after isotropic recovery (Fig. 5e)

(see figure on previous page)
Fig. 4 Isotropic restoration via Self-Net facilitates morphology reconstruction of densely-packed neurites. a XY MIP of an axo-axonic cell
(AAC). Scale bar: 50 μm. b YZ MIP of the image volume indicated by the blue box in (a). Raw and Self-Net data are shown for comparison. Scale bar:
10 μm. c Comparison of the axial MIP images of the raw, CARE, and Self-Net data indicated by the blue box in (b). Scale bar: 5 μm. d Intensity profiles
along the corresponding lines indicated by the colored arrowhead pairs in (c). e Color-coding isotropy ratios of the images shown in c. f Axial FWHMs
and isotropy ratios of the axon fibers in the image data shown in (c). g Automated skeletonization of the image data shown in (c). The yellow
arrowheads indicate typical skeletonization errors when using the raw and CARE data. h Automated skeleton extraction accuracy (n= 5 subblocks of
3003 voxels). i Volume rendering of a local dense image block containing four interwoven neurons. Raw and Self-Net+ data were shown for
comparison. j Local enlarged views indicated by the blue box in i. Intensity profiles of the colored dashed line are shown in the bottom right. Scale
bar: 5 μm. k Average axial FWHMs and signal-to-background ratios (SBRs) for the raw data and Self-Net and Self-Net+ output (n= 5 measurements).
l Erroneously-traced fiber length for each neuron in the raw and Self-Net+ data (n= 3 annotators). The gold-standard tracing results were derived
from the reconstruction consensus among three neuroanatomical experts, who independently performed tracing through slice-by-slice editing in
the HR lateral views of the raw data. m, n Two types of typical reconstruction errors occur in using the raw data. The dark cyan dashed lines indicate
the tracing results of the same annotator using the raw and Self-Net+ data more than 1 week apart. The tracing results using the Self-Net+ data
were consistent with the gold-standard tracing results. Top left: enlarged views of the regions indicated by the pink arrowheads. Scale bar: 10 μm.
Experiments were repeated with three other dense image stacks, achieving similar results
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indicated the isotropic HR data significantly lowered the
complexity of interpreting dense imaging data. Moreover,
any local misidentifications may accumulate to escalate the
reconstruction errors for long-range projection neurons.
We demonstrated that the tracing errors, in this case, were
reduced by about 20 times by using Self-Net-restored data
(Fig. 5f and Supplementary Table 5). As a typical example,
we showed a local decision error leading to the incorrect
tracing of more than 20% of the overall length of a projec-
tion axon (Fig. 5g and Supplementary Video 11) and
242 subsequent misassigned branches, resulting in unreli-
able downstream morphological analysis. After isotropic
restoration for this local challenging region, the neurite
structures were clear in all 3D perspective views (Fig. 5h).
The annotators could easily identify the correct proceeding
direction of each neurite, thus reducing the occurrence of
severe reconstruction errors. These results demonstrated
the ability of DeepIsoBrain to assist in efficient and accurate
brain-wide single-neuron reconstruction.

Discussion
In summary, we have presented a general deep

learning method, Self-Net, to realize fast and high-
fidelity isotropic resolution restoration from organelle
to tissue levels for a wide range of microscopy platforms,
including wide-field, laser-scanning, and super-
resolution microscopy. Moreover, the high effective-
ness and applicability of Self-Net enables isotropic HR
whole-brain imaging and thus addresses the last-mile
problem of data quality in single-neuron morphology
reconstruction with an almost negligible cost. Since
most biological samples are inherently 3D, our easy
realization of isotropic 3D imaging across different
microscopy platforms is promising to encourage dis-
coveries of new biological insights.
Our method has overcome the limitations of current

neural networks and opens a simple and reliable way to
achieve 3D isotropic imaging on different microscope
systems. First, obtaining high-quality and precisely-
matched training data is difficult or sometimes

impossible in practice. We employed the PSF aniso-
tropy and the repeatedly-appearing signal features in
arbitrary orientations to develop the self-learning
strategy. By employing the natural HR lateral images
to serve as rational learning targets, Self-Net does not
require prior knowledge of the image formation process
and other complex data preparation required by
supervised and semi-supervised approaches. Second,
for the difficulty of ensuring reliable inference under
unsupervised settings, Self-Net incorporates a two-
stage process to impose strong supervision on the
restoration results that successfully mitigates the hal-
lucination problem owing to the weak constraint in
traditional unsupervised methods. This is vital as only
high-fidelity reconstruction can be trusted in practical
applications. Finally, training and testing of large net-
works are time-consuming, memory-intensive, and
experience-dependent. In contrast, Self-Net is a fast
and compact plug-and-play method, and its training
process is simple and straightforward without hyper-
parameter adjustment. All these features make our
method more reliable and friendly to use in real-world
applications. Distinctly different from other sophisti-
cated hardware solutions, our high-fidelity computa-
tional approach can conveniently extend to general
laboratories as a routine operation.
As a concrete typical application, the accurate analysis

of the complex morphology of single neurons has
demonstrated the importance of 3D resolution isotropy
for biological research. Several recent works have
demonstrated the importance and uniqueness of brain-
wide single-neuron morphological reconstruction for
revealing projection pathways and defining cell
types36,41–47. However, the resolution anisotropy of
current HR whole-brain imaging still restricts the ability
to reconstruct single neuronal morphology accurately
and efficiently. The fast, easy-to-train, and high-fidelity
features of Self-Net enable us to develop DeepIsoBrain
to break the aforementioned bottleneck from the data
source in a highly economical manner. Our method can

(see figure on previous page)
Fig. 5 DeepIsoBrain for isotropic whole-brain imaging and accurately reconstructing long-range projection neurons. a Online self-learning
during whole-brain HR imaging. A data block with 5003 voxels containing dense neurites is sufficient for training Self-Net. b On-demand isotropic
restoration during brain-wide single-neuron reconstruction. c The number of raw data cubes (2003 voxel size) of the whole-brain dataset, and the
traversed and Self-Net-restored raw data cubes while reconstructing all 20 neurons. d Additional time cost comparison using different isotropic
strategies from the current highest of 0.2 × 0.2 × 1 μm3 to 0.2 × 0.2 × 0.2 μm3 for whole-brain imaging. e Comparing the tracing difficulties in 50
randomly-selected challenging cases using the raw and Self-Net data. f The tracing error rate in the challenging regions and the length and branch
number of erroneously-traced fibers using the raw and Self-Net data. The tracing GTs for these challenging areas were derived from the
reconstruction consensus among three neuroanatomical experts, who independently performed tracing through slice-by-slice editing in the HR
lateral views of the raw data. g A typical serious reconstruction error of tracing a neuron in the raw data. The accurately and erroneously-traced axon
fibers are colored green and pink, respectively. Scale bar: 1 mm. h Three orthogonal perspectives of the image block indicated by the yellow box in
(g) using the raw data and Self-Net-restored data. The dashed lines indicate the tracing results of the same annotator and the colors indicate different
branches. The insets show enlarged views of the regions indicated by the magenta arrowheads. The tracing results using Self-Net data were
consistent with the gold-standard tracing results. Scale bar: 10 μm
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be easily compatible with existing neuronal recon-
struction pipelines and offer significant improvements
in accuracy and efficiency. This is important for the cell
typing study that every systematic work involved thou-
sands of single neuronal reconstructions41,42. More
importantly, the negligible time and economic cost of
our method make it suitable for large-scale, indus-
trialized cell censuses such as BICCN48. We anticipate
that this method will greatly benefit the construction of
single-neuron connectomes and the produced high-
quality isotropic data potentially promote the develop-
ment of automatic algorithms for single-neuron
reconstructions.
Considering the ill-posed nature of the inverse pro-

blem of restoring the HR images from the LR obser-
vations, any network output is a prediction that cannot
precisely match the GT image in every detail. Self-Net is
no exception, albeit we demonstrated that it can miti-
gate significant hallucinations in inference. As the tol-
erance for error is ultimately dependent on the analysis
being made, when applying Self-Net to actual imaging
data of biological samples, it is recommended to verify
the accuracy of the model in specific tasks, such as
using the analysis results of human experts in the ori-
ginal data as the GT to verify whether the output results
of Self-Net on specific image analysis tasks are con-
sistent with the GT. It should also be noted that all
methods which utilize lateral images to improve the
corresponding axial images (including Self-Net) rely on
a key assumption that the samples appear similar in
both lateral and axial views, although most biological
structures satisfy this condition. Moreover, the perfor-
mance of Self-Net deteriorates as the signal-to-noise
ratios (SNRs) of the input signals decrease (Fig. S15),
suggesting denoising the low SNR data before training
Self-Net has the potential to achieve high-quality iso-
tropic recovery.
Overall, the Self-Net deep learning framework is an

effective and reliable approach to achieving resolution
isotropy of volumetric fluorescence microscopy. We
anticipate that Self-Net will be useful in a variety of fields
to improve not only existing 3D imaging datasets but also
new data acquisitions, and the general idea behind it may
be feasible for other image restoration tasks besides iso-
tropic recoveries, such as unsupervised denoising and
background suppression.

Materials and methods
Generation of the synthetic and semisynthetic datasets
Simulation of the bead volumes
In Fig. 1b, the GT image volumes containing beads at

random locations and with random radius and intensity
values were generated through customized Python scripts.
The radii of the beads ranged from 2 to 4 pixels, and the

gray values ranged from 150 to 255. The volume for
training isotropic recovery models contained 800 beads
and had a spatial size of 512 × 512 × 512 pixels. We
defined the pixel size as 200 nm. The widefield PSF with
1.0-NA and water immersion was generated using the
ImageJ plugin PSF generator49. The anisotropic image
volumes were obtained by convolving the GT image
volumes with the wide-field PSF.

Simulation of the tubular volumes
In Fig. 1c, the 1024 × 1024 × 1024 voxels-size synthetic

volume containing 5000 tubular objects was generated using
the code released in ref. 26. The GT data were generated by
convolving the synthetic tubular volume with an isotropic
Gaussian kernel that had a standard deviation of 1. The
anisotropic image volume was produced by convolving the
same tubular volume with an anisotropic Gaussian kernel
that laterally and axially had a standard deviation of 1 and 4,
respectively. This anisotropic image stack was further
downsampled along the axial direction with a scaling factor
of 4 for mimicking the subsampling process in real-world
volumetric acquisitions.

Generation of semisynthetic training data
In Fig. 1g, several image blocks containing dense

neurites from a randomly-selected whole-brain optical
imaging dataset were cropped. Lateral slices of the data
blocks were used as HR targets. The pixel-aligned aniso-
tropic blurred images were generated by first convolving
these HR images with a 2D Gaussian kernel that only
blurs in the vertical direction with a standard deviation of
2. Then the anisotropic blurred images were down-
sampled along the vertical direction at a scale factor of 4
(Fig. S3).

Sample preparation and data acquisition
3D imaging of diverse biological samples
One mTmG mouse was used in Fig. 2a, b. About 200-

μm tissue slices of the liver and 300-μm tissue slices of the
kidney were optically cleared by CUBIC50. The liver slices
were imaged using a custom-built time-delay integration-
based line-scanning microscope6 that has the character-
istics of wide-field imaging and enhanced signal-to-noise
ratio (Fig. 2a). A 20× /1.0-NA water-immersion objective
(XLUMPLFLN 20XW, Olympus) was used for acquisition
and the voxel size was 0.32 × 0.32 × 1 μm3. The kidney
slices were imaged using a Nikon Ni-E A1 multiphoton
laser-scanning microscope with a 60× /1.2-NA water-
immersion objective (Nikon) using 920-nm two-photon
excitation and a voxel size of 0.21 × 0.21 × 1 μm3 (Fig. 2b).
The whole-brain vasculature datasets used in Fig. 2c were
provided by Todorov et al.28, where the 3DISCO51 cleared
brains were acquired with LaVision light-sheet micro-
scopes at a 1.63 × 1.63 × 3 μm3 voxel resolution. One
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Thy1-GFP M-line mouse was used in Fig. 2d. The mouse
brain was sectioned into 300 μm tissue slices. The sec-
tions were optically cleared by CUBIC and then imaged
using the Nikon Ni-E A1 microscope working in the
confocal mode. The imaging setup was the same as the
two-photon imaging of the kidney.

STED imaging
The 40-nm fluorescent beads (abberior NANO-

PARTICLE SET) were imaged on a STED microscope
(STED Abberior Facility Line) using a 60× /1.4-NA oil-
immersion objective. The STED laser power was set at
50%, as we observed obvious photobleaching when per-
forming 3D imaging at 100% laser power. The Z-STED
data was acquired using 100% depletion power for Z. The
same FOV was then imaged using 30% depletion power
for Z and 70% depletion power for XY (Partial Z-STED).
The scanning step size for acquiring the Z-STED data
were 30 nm in all dimensions and for Partial Z-STED was
15 nm laterally and 50 nm axially.

Whole-brain imaging
Two Nkx2.1-CreER-Rosa26-loxp-stop-loxp-flpo (Nkx2.1-

CreER crossed with Rosa26-loxp-stop-loxp-flpo) mice with
sparsely virus-labeled AACs were used to demonstrate the
performance of Self-Net on local interneurons (Fig. 4a–h
and S8–S10). Two C57BL/6 J mice injected with 100 nL of
AAV-YFP in S1 were used to demonstrate that Self-Net
promoted morphology reconstruction of dense neuron
clusters (Fig. 4i–n) and long-range projection neurons
(Fig. 5). One C57BL/6 J mouse injected with 100 nl of
AAV2-hSyn-FLEX-pHOran4 in the S1 and M1 cortex was
used for dendrite spines detection study (Fig. S13). All mice
were obtained from Jackson Laboratory and were raised to
adulthood (>8 weeks) before the imaging experiments. The
sample preparation procedures have been described pre-
viously52. All animal experiments followed procedures
approved by the Institutional Animal Ethics Committee of
the Huazhong University of Science and Technology.
The datasets used in Figs. 4–5 and S8–S10 were

acquired with two fMOST systems6 at a 0.2 × 0.2 × 1 μm3

voxel resolution. Whole-brain imaging in Fig. S13 was
performed on a fMOST system at a 0.235 × 0.235 × 1 μm3

voxel resolution.

Self-Net for isotropic restoration
Different from self-supervised learning17,24, Self-Net

employs the self-learning strategy53,54 for learning iso-
tropic restoration only using the raw 3D anisotropic data
itself. It does not require the acquisition of isotropic target
data or handcrafted models to generate semisynthetic
training data. The training flowchart for Self-Net is shown in
Fig. S16. Consider an anisotropic image volume: X denotes
the set of HR lateral images, and Z denotes the set of blurred

axial images. Due to the low sampling rate along the axial
direction, all images in Z are interpolated to have the same
pixel size as that of the images in X. Y denotes the set of
downsampled lateral images, which are generated by first
downsampling the images in X along the vertical direction
at a certain scale (the axial step divided by the pixel size in
the lateral plane) and then interpolating these images to the
original size. Image xi in X is paired with image yi in Y and
unpaired with image zi in Z.
Self-Net is a two-stage unsupervised framework for

high-fidelity isotropic restoration in volumetric micro-
scopy. The first stage performs degradation modeling, and
the second stage performs isotropic recovery. At the
degradation modeling stage, similar to the CycleGAN
framework, two generators (GA and GB) and two dis-
criminators (DA and DB) are trained to learn the mapping
between the unpaired datasets Y and Z. For the Y to Z
mapping, GA aims to degrade the downsampled lateral
image yi to simulate the blurred axial image zi, and DA

attempts to distinguish the synthetic blurred axial image
GA(yi) from the real axial image zi. For the opposite
mapping (Z to Y), GB takes the axial image zi as input to
generate images that resemble the downsampled lateral
images yi, and DB attempts to distinguish the generated
image GB(zi) from the real image yi. The objective func-
tion of this adversarial training framework LGAN can be
defined as:

LGAN¼ LG þ LD

LG ¼ 1
N

PN
i¼1

kDA½GAðyiÞ� � 1k2 þ 1
N

PN
i¼1

kDB½GBðziÞ� � 1k2

LD ¼ 1
N

PN
i¼1

kDA½GAðyiÞ� � 0k2 þ 1
N

PN
i¼1

kDAðziÞ � 1k2

þ 1
N

PN
i¼1

kDB½GBðziÞ� � 0k2 þ 1
N

PN
i¼1

kDBðyiÞ � 1k2

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ
where LG is the generator loss, LD is the discriminator
loss, and N is the batch size. Note that the least-square
loss is employed instead of the negative log-likelihood loss
to achieve stable training55. To prevent mode collapse, the
generator loss is updated twice and then the discriminator
loss is updated once in each iteration. Besides the
adversarial training loss, the cycle consistency loss Lcycle
is introduced to constrain the space of possible mappings
and can be defined as:

Lcycle ¼ 1
N

XN
i¼1

kGB½GAðyiÞ� � yik1 þ
1
N

XN
i¼1

kGA½GBðziÞ� � zik1

ð2Þ

Instead of directly using the L1 loss function, the robust
Charbonnier loss56 is employed for better-handling
outliers.
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At the isotropic recovery stage, the weights of GA are
fixed. The synthetic blurred axial image GA(yi) along with
the pixel-aligned HR lateral image xi are used to train
DeblurNet, here denoted as H. The training loss Ldeblur is
the weighted sum of the L1 Charbonnier and SSIM losses:

Ldeblur ¼ 1
N

XN
i¼1

n
kH½GAðyiÞ� � xik1 þ σð1� SSIMðH½GAðyiÞ�; xiÞÞ

o

ð3Þ

where σ is the weighted term and is chosen as 0.1.

To enhance the performance of the degradation mod-
eling stage, the results obtained at the isotropic recovery
stage are introduced via feedback to help guide network
GA to generate more realistic degraded images. The
feedback loss Lfeedback shares the same form as that of the
deblurring loss Ldeblur. The only difference is that the
weights of H instead of GA are fixed. Taken together, the
full objective at the degradation modeling stage can be
written as:

Ldegrade¼ Lcycle þ λLGAN þ ρLfeedback ð4Þ

where λ and ρ are weighted terms. Similar to the settings
in the original CycleGAN25, the weighted term λ for
balancing the cycle consistency loss and GAN loss is set to
0.1. An appropriate weight for the feedback loss is
important to obtain a satisfactory isotropic recovery
performance. After careful comparison, ρ is set to 0.1
(Fig. S17). The degradation modeling loss Ldegrade and
deblurring loss Ldeblur are alternatively optimized for
stable training and fast convergence.

Network architecture
The architectures of all networks in Self-Net are illu-

strated in Fig. S18. DeblurNet, DeconvNet, and the gen-
erators (GA and GB) share the same architecture and are
constructed with residual blocks57. Different from the
image transform net employed in the CycleGAN, we
removed the downsampling and upsampling modules as
they were designed for the style transfer task. We also
employed fewer residual blocks to speed up network
inference. Specifically, The initial part of the network
contains three convolutional layers, each of which is fol-
lowed by a leaky rectified linear unit (LeakyReLU)58 with a
negative slope of 0.2, formulated as:

LeakyRELUðxÞ ¼ x; x > 0

0:2x; x � 0

�
ð5Þ

The middle part of the network comprises six residual
blocks, each of which contains two convolutional layers
with LeakyReLU activation functions. The operation for

each residual block can be denoted as:

y ¼ xþ LeakyRELU ½Conv2ðLeakyRELU ½Conv1ðxÞ�Þ� ð6Þ

where x is the input tensor, y is the output tensor, and
Conv(.) denotes the convolution operation. Symmetrical
to the beginning part, the tail of the network also contains
three convolutional layers, where the outputs of the first
two convolutional layers are activated via the LeakyReLU
function. Except for the first and last convolutional layers,
which use 7 × 7 kernels, the remaining convolutional
layers all employ 3 × 3 kernels. For all convolutional
layers, a 1 × 1 stride and zero-padding are applied to
maintain the initial image size. The feature size is set to 64
across all convolutional layers except the last layer, in
which the feature size is set to 1.

The discriminators (DA and DB) are based on the
PatchGAN framework59. Their networks contain four
convolutional layers with a 4 × 4 kernel size; the first two
layers use a 2 × 2 stride, while the last two layers use a
1 × 1 stride. Each pixel in the output image reflects the
probability that a 34 × 34 patch in the corresponding
input image is real or fake. The first convolutional layer is
followed by a LeakyReLU layer, and each of the next two
convolutional layers is followed by an instance normal-
ization layer60 and LeakyReLU layer. The feature size is
set to 64, 128, 256, and 1 for the four convolutional layers
in order.

Training and testing of Self-Net
Self-Net is trained on image patches with a spatial size

of 64 × 64 pixels. All training data are normalized to the
0–1 range following the criterion described in ref. 24.
Image augmentation, including random rotation and
flipping, is employed during training.
The network parameters are optimized via the Adam

optimizer61 with β1= 0.5 and β2= 0.999. The learning
rate for all networks is 1e-4 and decays by half after every
20 epochs. Self-Net training requires approximately 1 h
on a single Nvidia GeForce RTX 3090 card (24 GB of
memory) for 40 epochs (equivalent to 24,000 iterations).
The mini-batch size is set to 8. In the testing phase, only
DeblurNet is activated, and the inference time on an
image volume with a spatial size of 200 × 200 × 200 pixels
is 1.2 s. In all the data presented, the training of the cor-
responding Self-Net models was under the same hyper-
parameter settings as described above.
It is worth noticing that for new sample types or new

imaging conditions, it is required to use a single 3D stack
from the imaging data for training a new Self-Net model
to achieve optimal results. And for other 3D stacks under
the same conditions with the training data, it is unne-
cessary to train additional Self-Net models.
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Training and testing of Self-Net+
The Self-Net+ network is proposed to reconstruct high

SBR 3D image stacks with isotropic resolution in the pre-
sence of strong out-of-focus background. The core idea of
this method is to incorporate the deconvolution algorithms
to further improve the SBR of the isotropic image stack
output by Self-Net. Because as a widely-recognized optical-
sectioning method, deconvolution can be used to remove
the out-of-focus light by partially reversing the image for-
mation process with knowing PSF and noise prior39,62. Since
Poisson noise is the dominant noise source in fluorescence
microscopy, we employed the RL algorithm for image
deconvolution because it assumes that the image noise fol-
lows a Poisson distribution. We implemented the RL algo-
rithm using the deconvlucy function in MATLAB
(Mathworks). In the experiments of Figs. 4, 5, we cropped an
isolated diffraction-limited fluorescent dot (50 × 50 pixels
size) from the XZ slice of the Self-Net output to serve as the
experimental PSF (Fig. S19). After centering, background
subtracting, and normalizing, the PSF kernel can be used for
RL deconvolution. The number of iterations was set as 5.
The procedure for training Self-Net+ is as follows: (1)

Self-Net is trained using the raw image stack; (2) the
trained Self-Net is applied to enhance the axial images in
the raw image stack; (3) the output of the trained Self-Net
is deconvolved with the RL algorithm; and (4) DeconvNet
is end-to-end trained with the paired raw axial images and
deconvolved Self-Net output images. After training,
DeconvNet is loaded to enhance all the axial images in the
raw anisotropic volume (Fig. S11).

Implementation details for OT-CycleGAN and CARE
OT-CycleGAN
The OT-CycleGAN framework has been described in

detail in ref. 26. We replicated this model through the
authors’ released code (Zenodo https://doi.org/10.5281/
zenodo.6371391). The hyperparameter settings for train-
ing and testing on data of fluorescent beads, simulated
tubular objects, brain vasculature, and neurons were
consistent with the settings in ref. 26 on similar corre-
sponding data. As recommended in ref. 26, we employed
histogram-matching as post-processing to ensure a con-
sistent contrast between the input and network output
volumes.

CARE
The CARE method for isotropic recovery24 incorporates

two steps: (1) applying a degradation model (blurring and
downsampling) to modify the HR lateral images to resemble
LR axial images. (2) using these semi-synthetically generated
pairs to learn to reverse the lateral-to-axial degradation. In
the experiments in Fig. 4c–h, we applied a Gaussian kernel
(sigma= 3 pixels) that only blurs in the y dimension to the
lateral slices of the AAC imaging data. And the blurred

images were then downsampled by a factor of 5 to resemble
the LR axial images. The generated anisotropic blurred
images, along with the high-resolution lateral view ground
truth, were used to train the DeblurNet for learning to
reverse this anisotropic degradation.

Image quality evaluation
Two widely used performance metrics, i.e., RMSE and

SSIM63, were employed to quantify the distance between
the network output M and ground truth N. In detail,
RMSE is defined as:

RMSEðM;NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
W ´H

XW
i¼1

XH
j¼1

ðMi;j � Ni;jÞ2
vuut ð7Þ

where W and H are the image width and height,
respectively; a lower RMSE value indicates that the output
image is close to the GT image. SSIM can be defined as:

SSIMðM;NÞ ¼ ð2μMμN þ C1Þð2σMN þ C2Þ
ðμM2 þ μN

2 þ C1ÞðσM
2 þ σN

2 þ C2Þ ð8Þ

where µM and µN are the mean values of the two images
M and N, respectively, σM and σN are the standard
deviations of M and N, respectively, and σMN is the
covariance between the two images. Two constants C1

and C2 are used to avoid denominator values close to
zero. The output value of SSIM varies between 0 and 1,
and a value closer to 1 suggests less distortion.
The signal-to-background ratio (SBR) was calculated as

SBR= s/b, where s is the peak value of the signal, and b is
the mean value of the surrounding background.

Neuron reconstruction and visualization
Automatic neuron skeleton extraction
Automatic extraction of the neuron skeleton was imple-

mented via the constrained principal curve algorithm, which
is thoroughly described in ref. 37. Briefly, for a given image
stack, seed points are first selected based on criteria asso-
ciated with the signal intensity and local background. Next,
the initial tracing direction of each seed point is determined
via principal component analysis (PCA). Neurite tracing
starts from the selected seed points, and the direction of the
current traced points is determined according to the pre-
viously traced points. To obtain traced points close to the
neurite centerline, the mean shift algorithm is applied.
Finally, the rayburst sampling algorithm64 is employed to
decide whether to stop tracing.

Isotropy ratio
In Fig. S6, we estimated the isotropy ratio by randomly

selecting tubular structures in the imaging data, and then
measuring the FWHM values of the same structure in the
lateral and axial planes. In Fig. 4e, f, for a given neuronal
image stack, we first manually skeletonized neurite fibers.
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Skeleton points were resampled to obtain equal spacing.
We then extracted a series of data cubes of 23 × 23 × 23
voxels size centered on each point in the traced skeleton.
The forward direction of each skeleton point was deter-
mined by its four nearest neighboring points65, and the
normal direction through this point was the direction
orthogonal to the forward direction. We projected the
normal line onto the lateral and axial MIPs of the cube
and obtained intensity profiles along these lines. The
isotropy ratio at each skeleton point was defined as the
ratio of the FWHM value derived from the lateral line-
scan profile to the FWHM value derived from the axial
line-scan profile. Due to interference from closely spaced
neurites, certain points yielded a calculated isotropy ratio
that greatly deviated from the actual value. Thus, we first
manually measured several sets of isotropy values for the
data block and determined the average as a temporary
standard. All automatically calculated isotropy ratios
deviating by more than one-half of this standard were
discarded.

Semiautomatic neuron tracing
Since fully automatic neuron reconstruction methods

are yet to be reasonably reliable and stable, current
recognized methods for single-neuron tracing require
manual supervision. Therefore, we employed the semi-
automatic mode in GTree software40 to reconstruct the
morphology of labeled neurons in local image stacks or
whole-brain datasets (Figs. 4, 5). Before tracing, TIFF
image data were transformed into the native TDat for-
mat66 to manage the data input-output. The reconstruc-
tion process started from the cell body and was performed
by traversing and loading all subblocks containing asso-
ciated neurites. In each subblock, automatic tracing based
on the constrained principal curve was performed first,
followed by a manual assessment to determine whether to
continue automatic tracing or to revise any reconstruction
errors. We recorded the operation time during the tracing
using customized Python scripts. The reconstruction
results were saved as SWC files comprising a series of
skeleton points. The gold-standard tracing results were
derived from the reconstruction consensus among three
neuroanatomical experts, who independently performed
tracing through slice-by-slice editing in the HR lateral
views of the raw data.

Performance metrics
Two commonly used metrics, namely, the F1 score and

ESA, were employed to quantify the difference between
the tracing results and GT data. Denote R1 as the GT and
R2 as the reconstruction generated by automatic or
semiautomatic methods, respectively. Before calculation,
the nodes in R1 and R2 were first resampled to obtain
equal spacing. For each node in R2, we searched for the

node in R1 with the smallest distance from it, and this
distance was denoted as the reciprocal minimal spatial
distance. If the reciprocal minimal spatial distance was
lower than a predefined threshold (typically set to 1–3 μm
according to the maximum diameter of the neurites), the
node in R2 was regarded as a true positive (TP) node. The
recall and precision rates were defined as the number of
TP nodes divided by the number of nodes in R1 and R2,
respectively. Then, the F1 score can be formulated as:

F1 ¼ 2PR
P þ R

ð9Þ

where P and R denote the precision and recall rates,
respectively. The ESA value was derived by averaging all
reciprocal minimal spatial distances. Thus, the lower the
ESA value is, the closer the two reconstruction results are.

Criteria for tracing difficulty evaluation
To evaluate the tracing difficulty in locally challenging

areas, four difficulty levels were defined according to the
annotators’ decision times: very hard for a decision time
of more than 3min, hard for a decision time ranging from
2 to 3min, medium for a decision time ranging from 1 to
2min and easy for a decision time less than 1min.

Automatic detection of dendrite spines
Dendrite spines were automatically detected using the

filament module of Imaris software (V.9.0, Bitplane). To
generate the GT, three neuroanatomical experts were
recruited to manually identify spines independently. Their
consensus was regarded as the GT.

Visualization
The 3D volumes were visualized in Amira (v.6.1.1, FEI)

and Imaris software to generate figures and movies.
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