Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PsycGM: a comprehensive database for associations between gut microbiota and psychiatric disorders

Abstract

Psychiatric disorders pose substantial global burdens on public health, yet therapeutic options remain limited. Recently, gut microbiota is in the spotlight of new research on psychiatric disorders, as emerging discoveries have highlighted the importance of gut microbiome in the regulation of central nervous system via mediating the gut-brain-axis bidirectional communication. While metagenomics studies have accumulated for psychiatric disorders, few systematic efforts were dedicated to integrating these high-throughput data across diverse phenotypes, interventions, geographical regions, and biological species. To present a panoramic view of global data and provide a comprehensive resource for investigating the gut microbiota dysbiosis in psychiatric disorders, we developed the PsycGM, a manually curated and well-annotated database that provides the literature-supported associations between gut microbiota and psychiatric disorders or intervention measures. In total, PsycGM incorporated 559 studies from 31 countries worldwide, encompassing research involving humans, rats, mice, and non-human primates. PsycGM documented 8907 curated associations between 1514 gut microbial taxa and 11 psychiatric disorders, as well as 4050 associations between 869 taxa and 232 microbiota-based and non-microbiota-based interventions. Moreover, PsycGM provided a user-friendly web interface with comprehensive information, enabling browsing, retrieving and downloading of all entries. In the application of PsycGM, we panoramically depicted the intestinal microecological imbalance in depression. Additionally, we identified 9 microbial taxa consistently altered in patients with depression, with the most common dysregulations observed for Parabacteroides, Alistipes, and Faecalibacterium; in animal models of depression, consistent changes were observed in 21 microbial taxa, most frequently reported as Helicobacter, Lactobacillus, Roseburia, and the ratio of Firmicutes/Bacteroidetes. PsycGM is a comprehensive resource for future investigations on the role of gut microbiota in mental and brain health, and for therapeutic target innovations based on modifications of gut microbiota. PsycGM is freely accessed at http://psycgmomics.info.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the data composition in PsycGM.
Fig. 2: The numbers of reported entries for the most frequently reported microbial taxa at genus level in different psychiatric disorders in separate settings.
Fig. 3: Web interface of PsycGM.
Fig. 4: Differential microbial taxa reported by ≥2 human or animal studies on depression.
Fig. 5: Plots for data integration in a case study for the alteration of gut microbiota in depression.
Fig. 6: Overview of PsycGM database.

Similar content being viewed by others

Data availability

PsycGM is freely available at http://psycgmomics.info. All data sources analyzed in this study are included in the Supplementary Information. Supplementary information is available at MP’s website.

References

  1. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017;26:110–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee JY, Tsolis RM, Bäumler AJ. The microbiome and gut homeostasis. Science. 2022;377:eabp9960.

    Article  CAS  PubMed  Google Scholar 

  4. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71:1020–32.

    Article  PubMed  Google Scholar 

  5. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013.

    Article  CAS  PubMed  Google Scholar 

  6. Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021;172:105840.

    Article  PubMed  Google Scholar 

  7. Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, et al. Toward a deeper understanding of gut microbiome in depression: the promise of clinical applicability. Adv Sci. 2022;9:e2203707.

    Article  Google Scholar 

  9. Borkent J, Ioannou M, Laman JD, Haarman BCM, Sommer IEC. Role of the gut microbiome in three major psychiatric disorders. Psychol Med. 2022;52:1222–42.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.

    Article  CAS  PubMed  Google Scholar 

  11. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vuotto C, Battistini L, Caltagirone C, Borsellino G. Gut microbiota and disorders of the central nervous system. Neuroscientist. 2020;26:487–502.

    Article  CAS  PubMed  Google Scholar 

  13. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–79.

    Article  PubMed Central  Google Scholar 

  14. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng P, Wu J, Zhang H, Perry SW, Yin B, Tan X, et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol Psychiatry. 2021;26:2380–92.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv Sci. 2020;7:1902862.

    Article  CAS  Google Scholar 

  18. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82:472–87.

    Article  CAS  PubMed  Google Scholar 

  19. Abildgaard A, Kern T, Pedersen O, Hansen T, Wegener G, Lund S. The antidepressant-like effect of probiotics and their faecal abundance may be modulated by the cohabiting gut microbiota in rats. Eur Neuropsychopharmacol. 2019;29:98–110.

    Article  CAS  PubMed  Google Scholar 

  20. Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol. 2018;18:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry. 2023;28:3625–37.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kodama Y, Shumway M, Leinonen R. The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res. 2012;40:D54–6.

    Article  CAS  PubMed  Google Scholar 

  23. Harrison PW, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Holt S, et al. The European Nucleotide Archive in 2018. Nucleic Acids Res. 2019;47:D84–8.

    Article  CAS  PubMed  Google Scholar 

  24. Okido T, Kodama Y, Mashima J, Kosuge T, Fujisawa T, Ogasawara O. DNA Data Bank of Japan (DDBJ) update report 2021. Nucleic Acids Res. 2022;50:D102–5.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng L, Qi C, Zhuang H, Fu T, Zhang X. gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res. 2020;48:D554–60.

    Article  PubMed  Google Scholar 

  26. Zhang Q, Yu K, Li S, Zhang X, Zhao Q, Zhao X, et al. gutMEGA: a database of the human gut MEtaGenome Atlas. Brief Bioinform. 2021;22:bbaa082.

    Article  PubMed  Google Scholar 

  27. Wu S, Sun C, Li Y, Wang T, Jia L, Lai S, et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 2020;48:D545–53.

    Article  CAS  PubMed  Google Scholar 

  28. Ruszkowski J, Daca A, Szewczyk A, Dębska-Ślizień A, Witkowski JM. The influence of biologics on the microbiome in immune-mediated inflammatory diseases: a systematic review. Biomed Pharmacother. 2021;141:111904.

    Article  CAS  PubMed  Google Scholar 

  29. Bock PM, Martins AF, Ramalho R, Telo GH, Leivas G, Maraschin CK, et al. The impact of dietary, surgical, and pharmacological interventions on gut microbiota in individuals with diabetes mellitus: a systematic review. Diabetes Res Clin Pract. 2022;189:109944.

    Article  CAS  PubMed  Google Scholar 

  30. McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood disorders: the gut bacteriome and beyond. Biol Psychiatry. 2024;95:319–28.

    Article  CAS  PubMed  Google Scholar 

  31. Jayaraman S. Of ethnicity, environment, and microbiota. Cell Mol Immunol. 2019;16:106–8.

    Article  CAS  PubMed  Google Scholar 

  32. Parizadeh M, Arrieta MC. The global human gut microbiome: genes, lifestyles, and diet. Trends Mol Med. 2023;29:789–801.

    Article  PubMed  Google Scholar 

  33. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA. 2014;111:E2329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–89.

    Article  CAS  PubMed  Google Scholar 

  35. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  36. Janssens Y, Nielandt J, Bronselaer A, Debunne N, Verbeke F, Wynendaele E, et al. Disbiome database: linking the microbiome to disease. BMC Microbiol. 2018;18:50.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pu J, Yu Y, Liu Y, Tian L, Gui S, Zhong X, et al. MENDA: a comprehensive curated resource of metabolic characterization in depression. Brief Bioinform. 2020;21:1455–64.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Chang S, Li Z, Zhang K, Du Y, Ott J, et al. ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res. 2012;40:D1003–009.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng L, Yang H, Zhao H, Pei X, Shi H, Sun J, et al. MetSigDis: a manually curated resource for the metabolic signatures of diseases. Brief Bioinform. 2019;20:203–9.

    Article  PubMed  Google Scholar 

  40. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rikke BA, Wynes MW, Rozeboom LM, Barón AE, Hirsch FR. Independent validation test of the vote-counting strategy used to rank biomarkers from published studies. Biomark Med. 2015;9:751–61.

    Article  CAS  PubMed  Google Scholar 

  42. Park JE, Lim HR, Kim JW, Shin KH. Metabolite changes in risk of type 2 diabetes mellitus in cohort studies: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;140:216–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Joint Project of Chongqing Municipal Science and Technology Bureau and Chongqing Health Commission (2023CCXM003), the Natural Science Foundation of Chongqing (CSTB2024NSCQ-MSX1027), the Fund of Moutaintop Plan Project in the First Affiliated Hospital of Chongqing Medical University (cyyy-xkdfjh-lcyj-202301), the Natural Science Foundation Project of China (82371526), and the Natural Science Foundation Project of Chongqing (cstc2022ycjh-bgzxm0033). We thank Zhixin Chen for optimizing and beautifying the webpage of this database.

Author information

Authors and Affiliations

Authors

Contributions

Xie P and Liu YY conceptualized and designed the study. Wang DF was responsible for the literature search. Wang DF, Gui SW, Pu JC, Yan L, Li ZC, Tao XK were responsible for the study selection. Wang DF, Gui SW, Pu JC, Zhong XG, Yan L, Li ZC, Tao XK, Yang D, Zhou HP, and Qiao RJ were responsible for the data extraction, data curation, and quality assessment. Wang DF, Gui SW, and Pu JC wrote the original draft. Zhang HP, Cheng XY, Ren Y, Chen WY, Chen XP, Tao W, Chen Y, Chen X, Liu YY, and Xie P commented on and revised the manuscript. Xie P and Liu YY reviewed, edited, and made the final version. All authors contributed to the final draft of the manuscript.

Corresponding authors

Correspondence to Yiyun Liu or Peng Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. This study was approved by The Ethics Committee of Chongqing Medical University (IACUC-CQMU-2024-0115). The datasets generated in the current study were collected from publicly available literature or reports, therefore informed consent forms are not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Gui, S., Pu, J. et al. PsycGM: a comprehensive database for associations between gut microbiota and psychiatric disorders. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03000-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03000-5

Search

Quick links