Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Expression of SARS-CoV-2 entry receptor ACE2 in human brain and its association with Alzheimer’s disease and COVID-19

Abstract

It is known that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19). It is widely reported that Alzheimer’s disease (AD) is associated with the highest risk of COVID-19 infection, hospitalization and mortality. However, it remains largely unclear about the link between AD and COVID-19. ACE2 is an entry receptor for SARS-CoV-2. We consider that there may be a link between AD and COVID-19 through the expression of ACE2. Here, we summarize recent findings about the ACE2 expression especially in AD and COVID-19, and shows that (1) ACE2 shows mRNA and protein expression in human brain tissues, especially in neurons and non-neuron cells; (2) low ACE2 mRNA and protein expression are sufficient for SARS-CoV-2 entry into the human brain through the neural route (olfactory and/or vagal) and the hematogenous route; (3) SARS-CoV-2 RNA and protein were detected in brains of COVID-19 patients; (4) SARS-CoV-2 infects and replicates in human brain dependent on ACE2; (5) SARS-CoV-2 viral RNA load shows a positive association with ACE2 mRNA levels and COVID-19 severity; (6) ACE2 shows increased expression in AD compared with controls in human brain; (7) ACE2 shows increased expression in COVID-19 compared with controls in human brain; (8) ACE2 expression levels affect COVID-19 outcomes. Together, ACE2 shows significantly increased mRNA and protein expression in AD compared with controls in human brain. Consequently, the increased expression of ACE2 would facilitate infection with SARS-CoV-2, and play a role in the context of COVID-19. These findings suggest that the expression of ACE2 may partly explain the link of AD with COVID-19 infection, hospitalization and mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Box plots for the expression of ACE2 in different tissues in GTEx.
Fig. 2: Link between AD and COVID-19 through the expression of ARS-CoV-2 entry receptor ACE2.
Fig. 3: Single-nucleus transcriptomes of SARS-CoV-2 entry receptors ACE2, CTSL, DPP4 and NRP1 in the major human brain vascular and perivascular cell types from the cortex and hippocampus of 9 AD patients and 8 controls.
Fig. 4: Single-nucleus transcriptomes of SARS-CoV-2 entry receptors TMEM106B, TMPRSS2, TMPRSS4 and TPCN2 in the major human brain vascular and perivascular cell types from the cortex and hippocampus of 9 AD patients and 8 controls.

Similar content being viewed by others

Data availability

All relevant data are within the paper. The authors confirm that all data underlying the findings are either fully available without restriction through consortia websites, or may be made available from consortia upon request.

References

  1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.

    CAS  PubMed  Google Scholar 

  2. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17:543–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deigendesch N, Sironi L, Kutza M, Wischnewski S, Fuchs V, Hench J, et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020;140:583–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Atkins JL, Masoli JAH, Delgado J, Pilling LC, Kuo CL, Kuchel GA, et al. Preexisting comorbidities predicting COVID-19 and mortality in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020;75:2224–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuo CL, Pilling LC, Atkins JL, Masoli JAH, Delgado J, Kuchel GA, et al. APOE e4 genotype predicts severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020;75:2231–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mok VCT, Pendlebury S, Wong A, Alladi S, Au L, Bath PM, et al. Tackling challenges in care of Alzheimer’s disease and other dementias amid the COVID-19 pandemic, now and in the future. Alzheimers Dement. 2020;16:1571–81.

    PubMed  Google Scholar 

  7. Yu Y, Travaglio M, Popovic R, Leal NS, Martins LM. Alzheimer’s and Parkinson’s diseases predict different COVID-19 outcomes: A UK Biobank Study. Geriatrics. 2021;6:10.

    PubMed  PubMed Central  Google Scholar 

  8. Tahira AC, Verjovski-Almeida S, Ferreira ST. Dementia is an age-independent risk factor for severity and death in COVID-19 inpatients. Alzheimers Dement. 2021;17:1818–31.

    CAS  PubMed  Google Scholar 

  9. Wang Q, Davis PB, Gurney ME, Xu R. COVID-19 and dementia: analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement. 2021;17:1297–306.

    CAS  PubMed  Google Scholar 

  10. Mangal R, Ding Y. Mini review: prospective therapeutic targets of Alzheimer’s disease. Brain Circ. 2022;8:1–5.

    PubMed  PubMed Central  Google Scholar 

  11. Thakkar N, Martis PB, Kutikuppala LVS, Kuchana SK, Mohapatra RK. Lecanemab: a hope in the management of Alzheimer’s disease. Brain Circ. 2023;9:194–5.

    PubMed  PubMed Central  Google Scholar 

  12. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020;369:m1985.

    PubMed  PubMed Central  Google Scholar 

  13. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Luo W, Huang L, Xiao J, Li F, Qin S, et al. A comprehensive investigation of the mRNA and protein level of ACE2, the putative receptor of SARS-CoV-2, in human tissues and blood cells. Int J Med Sci. 2020;17:1522–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen R, Wang K, Yu J, Howard D, French L, Chen Z, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 2020;11:573095.

    PubMed  Google Scholar 

  16. Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16:e9610.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2022;42:217–24.

    CAS  PubMed  Google Scholar 

  18. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:45.

    PubMed  PubMed Central  Google Scholar 

  19. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    PubMed  Google Scholar 

  20. Katz J, Yue S, Xue W, Gao H. Increased odds ratio for erectile dysfunction in COVID-19 patients. J Endocrinol Invest. 2022;45:859–64.

    CAS  PubMed  Google Scholar 

  21. Xu E, Xie Y, Al-Aly Z. Long-term gastrointestinal outcomes of COVID-19. Nat Commun. 2023;14:983.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee K, Park J, Lee J, Lee M, Kim HJ, Son Y, et al. Long-term gastrointestinal and hepatobiliary outcomes of COVID-19: a multinational population-based cohort study from South Korea, Japan, and the UK. Clin Mol Hepatol. 2024;30:943–58.

    PubMed  PubMed Central  Google Scholar 

  23. Lindskog C, Mear L, Virhammar J, Fallmar D, Kumlien E, Hesselager G, et al. Protein expression profile of ACE2 in the normal and COVID-19-affected human brain. J Proteome Res. 2022;21:2137–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui H, Su S, Cao Y, Ma C, Qiu W. The altered anatomical distribution of ACE2 in the brain with Alzheimer’s disease pathology. Front Cell Dev Biol. 2021;9:684874.

    PubMed  PubMed Central  Google Scholar 

  25. Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, et al. SARS-CoV-2 receptors and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience. 2020;23:101839.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Matschke J, Lutgehetmann M, Hagel C, Sperhake JP, Schroder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19:919–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218:e20202135.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu J, Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell Mol Neurobiol. 2022;42:305–9.

    CAS  PubMed  Google Scholar 

  29. Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension. 2019;74:1181–91.

    CAS  PubMed  Google Scholar 

  30. Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RA, et al. Brain-selective overexpression of human Angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res. 2010;106:373–82.

    CAS  PubMed  Google Scholar 

  31. Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension. 2015;65:577–86.

    CAS  PubMed  Google Scholar 

  32. Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Zhang Y, Zhang L, Qin C. Overexpression of ACE2 ameliorates Abeta-induced blood-brain barrier damage and angiogenesis by inhibiting NF-kappaB/VEGF/VEGFR2 pathway. Animal Model Exp Med. 2023;6:237–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reynolds JL, Mahajan SD. SARS-COV2 alters blood brain barrier integrity contributing to neuro-inflammation. J Neuroimmune Pharmacol. 2021;16:4–6.

    PubMed  PubMed Central  Google Scholar 

  35. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24:168–75.

    CAS  PubMed  Google Scholar 

  36. Bulfamante G, Bocci T, Falleni M, Campiglio L, Coppola S, Tosi D, et al. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J Neurol. 2021;268:4486–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wenzel J, Lampe J, Muller-Fielitz H, Schuster R, Zille M, Muller K, et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021;24:1522–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612:758–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshall M. COVID and the brain: researchers zero in on how damage occurs. Nature. 2021;595:484–5.

    CAS  PubMed  Google Scholar 

  40. Wang L, Sievert D, Clark AE, Lee S, Federman H, Gastfriend BD, et al. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med. 2021;27:1600–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Viszlayova D, Sojka M, Dobrodenkova S, Szabo S, Bilec O, Turzova M, et al. SARS-CoV-2 RNA in the cerebrospinal fluid of a patient with long COVID. Ther Adv Infect Dis. 2021;8:20499361211048572.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Luis MB, Liguori NF, Lopez PA, Alonso R. SARS-CoV-2 RNA detection in cerebrospinal fluid: presentation of two cases and review of literature. Brain Behav Immun Health. 2021;15:100282.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Virhammar J, Kumlien E, Fallmar D, Frithiof R, Jackmann S, Skold MK, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95:445–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiang P, Xu X, Lu X, Gao L, Wang H, Li Z, et al. Case report: identification of SARS-CoV-2 in cerebrospinal fluid by ultrahigh-depth sequencing in a patient with coronavirus disease 2019 and neurological dysfunction. Front Med. 2021;8:629828.

    Google Scholar 

  45. Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6:337.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24:368–78.

    CAS  PubMed  Google Scholar 

  47. Lempriere S. SARS-CoV-2 detected in olfactory neurons. Nat Rev Neurol. 2021;17:63.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct Target Ther. 2021;6:169.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95:7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chu H, Chan JF, Yuen TT, Shuai H, Yuan S, Wang Y, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe. 2020;1:e14–e23.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang BZ, Chu H, Han S, Shuai H, Deng J, Hu YF, et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 2020;30:928–31.

    CAS  PubMed  Google Scholar 

  52. Mesci P, de Souza JS, Martin-Sancho L, Macia A, Saleh A, Yin X, et al. SARS-CoV-2 infects human brain organoids causing cell death and loss of synapses that can be rescued by treatment with Sofosbuvir. PLoS Biol. 2022;20:e3001845.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kettunen P, Lesnikova A, Rasanen N, Ojha R, Palmunen L, Laakso M, et al. SARS-CoV-2 infection of human neurons is TMPRSS2 independent, requires endosomal cell entry, and can be blocked by inhibitors of host phosphoinositol-5 kinase. J Virol. 2023;97:e0014423.

    PubMed  Google Scholar 

  54. Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17:307–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang AT, Buchholz DW, Szigety KM, Imbiakha B, Gao S, Frankfurter M, et al. Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biol. 2023;21:e3001989.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nikiforuk AM, Kuchinski KS, Twa DDW, Lukac CD, Sbihi H, Basham CA, et al. The contrasting role of nasopharyngeal angiotensin converting enzyme 2 (ACE2) transcription in SARS-CoV-2 infection: a cross-sectional study of people tested for COVID-19 in British Columbia, Canada. EBioMedicine. 2021;66:103316.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mpekoulis G, Frakolaki E, Taka S, Ioannidis A, Vassiliou AG, Kalliampakou KI, et al. Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform. PLoS ONE. 2021;16:e0253458.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat Commun. 2020;11:5493.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boyapati A, Wipperman MF, Ehmann PJ, Hamon S, Lederer DJ, Waldron A, et al. Baseline severe acute respiratory syndrome viral load is associated with coronavirus disease 2019 severity and clinical outcomes: post hoc analyses of a phase 2/3 trial. J Infect Dis. 2021;224:1830–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Caceres PS, Savickas G, Murray SL, Umanath K, Uduman J, Yee J, et al. High SARS-CoV-2 viral load in urine sediment correlates with acute kidney injury and poor COVID-19 outcome. J Am Soc Nephrol. 2021;32:2517–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Paranjpe I, Chaudhary K, Johnson KW, Jaladanki SK, Zhao S, De Freitas JK, et al. Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: a retrospective cohort study. PLoS ONE. 2021;16:e0247366.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH 3rd, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182:429–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim KH, Yang S, Kim SH, Joo JY. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer’s disease. J Infect. 2020;81:e33–e34.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding Q, Shults NV, Gychka SG, Harris BT, Suzuki YJ. Protein expression of angiotensin-converting enzyme 2 (ACE2) is upregulated in brains with Alzheimer’s disease. Int J Mol Sci. 2021;22:1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao Y, Li W, Lukiw W. Ubiquity of the SARS-CoV-2 receptor ACE2 and upregulation in limbic regions of Alzheimer’s disease brain. Folia Neuropathol. 2021;59:232–8.

    PubMed  Google Scholar 

  66. Reveret L, Leclerc M, Emond V, Tremblay C, Loiselle A, Bourassa P, et al. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer’s disease. Acta Neuropathol Commun. 2023;11:159.

    PubMed  PubMed Central  Google Scholar 

  67. Mehri S, Finsterer J. A stroke in severe acute respiratory syndrome coronavirus 2 infected is not necessarily a COVID-stroke. Brain Circ. 2023;9:198–9.

    PubMed  PubMed Central  Google Scholar 

  68. Nagamine T. Restlessness with manic episodes induced by right-sided multiple strokes after COVID-19 infection: a case report. Brain Circ. 2023;9:112–5.

    PubMed  PubMed Central  Google Scholar 

  69. Nagamine T. Beware of bihemispheric stroke after Omicron variant infection in the elderly. Brain Circ. 2023;9:52–54.

    PubMed  PubMed Central  Google Scholar 

  70. Carpio-Orantes LD, Solis-Sanchez I, Moreno-Aldama NP, Aguilar-Silva A, Garcia-Mendez S, Sanchez-Diaz JS. Incidence of stroke in a population affected by COVID-19 in Veracruz, Mexico. Brain Circ. 2023;9:55–56.

    PubMed  PubMed Central  Google Scholar 

  71. Kurian C, Mayer S, Kaur G, Sahni R, Feldstein E, Samaan M, et al. Bihemispheric ischemic strokes in patients with COVID-19. Brain Circ. 2022;8:10–16.

    PubMed  PubMed Central  Google Scholar 

  72. Alhazmi FH, Alsharif WM, Alshoabi SA, Gameraddin M, Aloufi KM, Abdulaal OM, et al. Identifying cerebral microstructural changes in patients with COVID-19 using MRI: a systematic review. Brain Circ. 2023;9:6–15.

    PubMed  PubMed Central  Google Scholar 

  73. Wijnant SRA, Jacobs M, Van Eeckhoutte HP, Lapauw B, Joos GF, Bracke KR, et al. Expression of ACE2, the SARS-CoV-2 receptor, in lung tissue of patients with type 2 diabetes. Diabetes. 2020;69:2691–9.

    CAS  PubMed  Google Scholar 

  74. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Goncalves ANA, Ogava RLT, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis. 2020;222:556–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jacobs M, Van Eeckhoutte HP, Wijnant SRA, Janssens W, Joos GF, Brusselle GG, et al. Increased expression of ACE2, the SARS-CoV-2 entry receptor, in alveolar and bronchial epithelium of smokers and COPD subjects. Eur Respir J. 2020;56:2002378.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi JY, Lee HK, Park JH, Cho SJ, Kwon M, Jo C, et al. Altered COVID-19 receptor ACE2 expression in a higher risk group for cerebrovascular disease and ischemic stroke. Biochem Biophys Res Commun. 2020;528:413–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bristow MR, Zisman LS, Altman NL, Gilbert EM, Lowes BD, Minobe WA, et al. Dynamic regulation of SARS-Cov-2 binding and cell entry mechanisms in remodeled human ventricular myocardium. JACC Basic Transl Sci. 2020;5:871–83.

    PubMed  PubMed Central  Google Scholar 

  78. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116:1097–100.

    CAS  PubMed  Google Scholar 

  79. Kehoe PG. Angiotensins and Alzheimer’s disease: a bench to bedside overview. Alzheimers Res Ther. 2009;1:3.

    PubMed  PubMed Central  Google Scholar 

  80. Abbasi J. Choose ARBs over ACE inhibitors for first-line hypertension treatment, large new analysis suggests. JAMA. 2021;326:1244–5.

    PubMed  Google Scholar 

  81. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8:e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ouk M, Wu CY, Rabin JS, Jackson A, Edwards JD, Ramirez J, et al. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: the importance of blood-brain barrier penetration and APOE epsilon4 carrier status. Alzheimers Res Ther. 2021;13:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohrui T, Tomita N, Sato-Nakagawa T, Matsui T, Maruyama M, Niwa K, et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology. 2004;63:1324–5.

    CAS  PubMed  Google Scholar 

  84. Gao Y, O’Caoimh R, Healy L, Kerins DM, Eustace J, Guyatt G, et al. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open. 2013;3:e002881.

    PubMed  PubMed Central  Google Scholar 

  85. Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169:1195–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53:474–81.

    CAS  PubMed  Google Scholar 

  87. McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin Hypertens. 2020;26:14.

    PubMed  PubMed Central  Google Scholar 

  88. Gheware A, Ray A, Rana D, Bajpai P, Nambirajan A, Arulselvi S, et al. ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep. 2022;12:4058.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Green R, Mayilsamy K, McGill AR, Martinez TE, Chandran B, Blair LJ, et al. SARS-CoV-2 infection increases the gene expression profile for Alzheimer’s disease risk. Mol Ther Methods Clin Dev. 2022;27:217–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.

    PubMed  Google Scholar 

  92. Evans CE, Miners JS, Piva G, Willis CL, Heard DM, Kidd EJ, et al. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol. 2020;139:485–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323:2427–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mizrahi B, Shilo S, Rossman H, Kalkstein N, Marcus K, Barer Y, et al. Longitudinal symptom dynamics of COVID-19 infection. Nat Commun. 2020;11:6208.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Molteni E, Sudre CH, Canas LS, Bhopal SS, Hughes RC, Antonelli M, et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health. 2021;5:708–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Harb AA, Chen R, Chase HS, Natarajan K, Noble JM. Clinical features and outcomes of patients with dementia compared to an aging cohort hospitalized during the initial New York City COVID-19 wave. J Alzheimers Dis. 2021;81:679–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li J, Long X, Huang H, Tang J, Zhu C, Hu S, et al. Resilience of Alzheimer’s disease to COVID-19. J Alzheimers Dis. 2020;77:67–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kragstrup TW, Singh HS, Grundberg I, Nielsen AL, Rivellese F, Mehta A, et al. Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients. PLoS ONE. 2021;16:e0252799.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Furuhashi M, Sakai A, Tanaka M, Higashiura Y, Mori K, Koyama M, et al. Distinct regulation of U-ACE2 and P-ACE2 (urinary and plasma angiotensin-converting enzyme 2) in a Japanese general population. Hypertension. 2021;78:1138–49.

    CAS  PubMed  Google Scholar 

  101. Patel SK, Juno JA, Lee WS, Wragg KM, Hogarth PM, Kent SJ, et al. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: implications for COVID-19 pathogenesis and consequences. Eur Respir J. 2021;57:2003730.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Garcia-Ayllon MS, Moreno-Perez O, Garcia-Arriaza J, Ramos-Rincon JM, Cortes-Gomez MA, Brinkmalm G, et al. Plasma ACE2 species are differentially altered in COVID-19 patients. FASEB J. 2021;35:e21745.

    CAS  PubMed  Google Scholar 

  103. Lundstrom A, Ziegler L, Havervall S, Rudberg AS, von Meijenfeldt F, Lisman T, et al. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol. 2021;93:5908–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fagyas M, Fejes Z, Suto R, Nagy Z, Szekely B, Pocsi M, et al. Circulating ACE2 activity predicts mortality and disease severity in hospitalized COVID-19 patients. Int J Infect Dis. 2022;115:8–16.

    CAS  PubMed  Google Scholar 

  105. Ramchand J, Burrell LM. Circulating ACE2: a novel biomarker of cardiovascular risk. Lancet. 2020;396:937–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Narula S, Yusuf S, Chong M, Ramasundarahettige C, Rangarajan S, Bangdiwala SI, et al. Plasma ACE2 and risk of death or cardiometabolic diseases: a case-cohort analysis. Lancet. 2020;396:968–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res Ther. 2016;8:50.

    PubMed  PubMed Central  Google Scholar 

  108. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Ross J, Parikshak N, et al. Tropism of SARS-CoV-2 for human cortical astrocytes. Proc Natl Acad Sci USA. 2022;119:e2122236119.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Baggen J, Jacquemyn M, Persoons L, Vanstreels E, Pye VE, Wrobel AG, et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;186:3427–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang AC, Vest RT, Kern F, Lee DP, Agam M, Maat CA, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603:885–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Magusali N, Graham AC, Piers TM, Panichnantakul P, Yaman U, Shoai M, et al. A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain. 2021;144:3727–41.

    PubMed  PubMed Central  Google Scholar 

  113. Zhang Y, Xu F, Wang T, Han Z, Shang H, Han K, et al. Shared genetics and causal association between plasma levels of SARS-CoV-2 entry receptor ACE2 and Alzheimer’s disease. CNS Neurosci Ther. 2024;30:e14873.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Genotype-Tissue Expression (GTEx) Project. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from: https://www.gtexportal.org/home/ the GTEx Portal (GTEx Analysis Release V10 (dbGaP Accession phs000424.v10.p2)) on December 4, 2024.

Funding

This work was supported by funding from the National Key R&D Program of China (No. 2023YFC3605200, and 2023YFC3605202), National Science and Technology Major Project (2023ZD0505306), National Natural Science Foundation of China (No. 82471449, 82071212, and 82371305), Beijing Natural Science Foundation (No. JQ21022 and Z240021).

Author information

Authors and Affiliations

Contributions

GYL, SJL, JYS, PGY and MXW conceived and initiated the project. GYL, HL, SJL, JYS, ZFH, TW, SG, PZ, and YC systematically searched PubMed, Google Scholar, Web of Science, Scopus, and Embase to identify the potential articles, analyzed the data, and wrote the first draft of the manuscript. All authors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript.

Corresponding authors

Correspondence to Peiguang Yan, Mingxin Wang or Guiyou Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This article contains human participants collected by several studies performed by previous studies. All participants gave informed consent in all the corresponding original studies. Here, our study is based on the publicly available datasets, and not the individual-level data. Hence, ethical approval was not sought.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sun, J., Li, H. et al. Expression of SARS-CoV-2 entry receptor ACE2 in human brain and its association with Alzheimer’s disease and COVID-19. Mol Psychiatry 30, 3257–3268 (2025). https://doi.org/10.1038/s41380-025-03006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-025-03006-z

Search

Quick links