Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subcellular functions of tau mediate repair response and synaptic homeostasis in injury

Abstract

Injury responses in terminally differentiated cells such as neurons are tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces an increase in phosphorylated tau in the nucleus where it directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX phosphorylation after irradiation, indicating that tau may play an important role in the neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels, a positive regulator of protein translation after irradiation. This initial response cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Downstream, the novel object recognition test showed a decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity contained increased delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau’s previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within neurons. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuronal injury induces nuclear sequestration of phosphorylated tau in primary cortical neurons.
Fig. 2: IP-MS and ChIP-Seq identifies unique ptau-interactors and ptau-chromatin sites following radiation-induced neuronal injury.
Fig. 3: DNA damage repair is diminished in brains of tau-knockout mice.
Fig. 4: Translation machinery and protein synthesis is modulated in tau-knockdown hiPSC-derived cerebral organoids and tau-knockout mice after injury.
Fig. 5: Synaptic composition is altered in response to injury and tau status.
Fig. 6: Radiation injury and tau knockout worsens cognitive functioning and impairs spontaneous firing patterns and spectral power in tau knockout mice.

Similar content being viewed by others

Data availability

All relevant data are included in the paper. Data are available from the corresponding author upon reasonable request.

References

  1. Davis FG, Dolecek TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol. 2012;14:1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hossain MJ, Xiao W, Tayeb M, Khan S. Epidemiology and prognostic factors of pediatric brain tumor survival in the US: evidence from four decades of population data. Cancer Epidemiol. 2021;72:101942. https://doi.org/10.1016/j.canep.2021.101942

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, II’yasova D, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer. 2008;113:1953–68.

    Article  PubMed  Google Scholar 

  4. Gould J. Breaking down the epidemiology of brain cancer. Nature. 2018;561:S40–S41.

    Article  CAS  PubMed  Google Scholar 

  5. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol. 2013;15:ii1–ii56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeNunzio NJ, Yock TI. Modern radiotherapy for pediatric brain tumors. Cancers. 2020;12:1533.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grunert M, Kassubek R, Danz B, Klemenz B, Hasslacher S, Stroh S, et al. Radiation and brain tumors: an overview. Crit Rev Oncog. 2018;23:119–38.

    Article  PubMed  Google Scholar 

  8. Baumann M, Krause M, Overgaard J, Debus J, Bentzen AM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49.

    Article  CAS  PubMed  Google Scholar 

  9. Mehta MP, Tomé WA, Olivera GH. Radiotherapy for brain tumors. Curr Oncol Rep. 2000;2:438–44.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman KE, Yock TI. Radiation therapy for pediatric central nervous system tumors. J Child Neurol. 2009;24:1387–96.

    Article  PubMed  Google Scholar 

  11. Salari N, Ghasemi H, Fatahian R, Mansouri K, Dokaneheifard S, Shiri MH, et al. The global prevalence of primary central nervous system tumors: a systematic review and meta-analysis. Eur J Med Res. 2023;28:39.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ramírez-Guerrero S, Vargas-Cuellar MP, Charry-Sánchez JD, Talero-Gutiérrez C. Cognitive sequelae of radiotherapy in primary brain tumors. Interdiscip Neurosurg. 2022;98:18.

    Google Scholar 

  13. Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron. 2022;110:2215–41.

    Article  CAS  PubMed  Google Scholar 

  14. Michaelidesová A, Konířová J, Bartůněk P, Zíková M. Effects of radiation therapy on neural stem cells. Genes. 2019;10:640.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mineyeva OA, Bezriadnov DV, Kedrov AV, Lazutkin AA, Anokhin KV, Enikolopov GN. Radiation induces distinct changes in defined subpopulations of neural stem and progenitor cells in the adult hippocampus. Front Neurosci. 2018;12:1013.

    Article  PubMed  Google Scholar 

  16. Wu PH, Coultrap S, Pinnix C, Davies KD, Tailor R, Ang KK, et al. Radiation induces acute alterations in neuronal function. PLoS ONE. 2012;7:e37677. https://doi.org/10.1371/journal.pone.0037677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang D, Zhou W, Lam TT, Li Y, Duman JG, Dougherty PM, et al. Cranial irradiation induces axon initial segment dysfunction and neuronal injury in the prefrontal cortex and impairs hippocampal coupling. Neurooncol Adv. 2020;2:vdaa058.

    PubMed  PubMed Central  Google Scholar 

  18. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balentova S, Adamkov M. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci. 2015;16:27796–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong M, Tao Y, Gao Q, Feng B, Yan W, Zhou Y, et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell. 2021;28:112–26.

    Article  CAS  PubMed  Google Scholar 

  21. Luo L. Architectures of neuronal circuits. Science. 2021;373:eabg7285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ünal HT, Başçiftçi F. Evolutionary design of neural network architectures: a review of three decades of research. Artif Intell Rev. 2022;55:1723–802.

    Article  Google Scholar 

  23. Schmidt ERE, Polleux F. Genetic mechanisms underlying the evolution of connectivity in the human cortex. Front Neural Circuits. 2022;15:787164.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2006;125:2095–104.

    Google Scholar 

  25. Vona R, Mileo AM, Matarrese P. Microtubule-based mitochondrial dynamics as a valuable therapeutic target in cancer. Cancers. 2021;13:5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lasser M, Tiber J, Lowery LA. The role of the microtubule cytoskeleton in neurodevelopmental disorders. Front Cell Neurosci. 2018;12:165.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett. 2022;753:135850.

    Article  Google Scholar 

  28. Takei Y, Kikkawa YS, Atapour N, Hensch TK, Hirokawa N. Defects in synaptic plasticity, reduced NMDA-receptor transport, and instability of postsynaptic density proteins in mice lacking microtubule-associated protein 1A. J Neurosci. 2015;35:15539–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 2019;2:804–19.

    Article  Google Scholar 

  30. Méphon-Gaspard A, Boca M, Pioche-Durieu C, Desforges B, Burgo A, Hamon L, et al. Role of tau in the spatial organization of axonal microtubules: keeping parallel microtubules evenly distributed despite macromolecular crowding. Cell Mol Life Sci. 2016;73:3745–60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: new paradigms for neurodegenerative disease. Bioessays. 2023;45:e2200138.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ulrich G, Salvade A, Boersema P, Cali T, Foglieni C, Sola M, et al. Phosphorylation of nuclear tau is modulated by distinct cellular pathways. Sci Rep. 2018;8:17702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Violet M, Delattre L, Tardivel M, Sultan A, Chauderlier A, Cailierez R, et al. A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci. 2014;8:84.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, et al. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem. 2011;286:4566–75.

    Article  CAS  PubMed  Google Scholar 

  35. Asada-Utsugi M, Uemura K, Ayaki T, Uemura MT, Minamiyama S, Hikiami R, et al. Failure of DNA double-strand break repair by tau mediates Alzheimer’s disease pathology in vitro. Commun Biol. 2022;5:358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014;15:4671–713.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, et al. Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. 2019;11:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He HJ, Wang XS, Pan R, Wang DL, Liu MN, He RQ. The proline-rich ___domain of tau plays a role in interactions with actin. BMC Cell Biol. 2009;10:81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benhelli-Mokrani H, Mansoroglu Z, Chauderlier A, Albaud B, Gentien D, Sommer S, et al. Genome-wide identification of genic and intergenic neuronal DNA regions bound by Tau protein under physiological and stress conditions. Nucleic Acids Res. 2018;46:11405–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.

    Article  CAS  PubMed  Google Scholar 

  41. Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W-Y, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, et al. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci. 2013;16:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron. 2005;45:525–38.

    Article  CAS  PubMed  Google Scholar 

  44. Duman JG, Tzeng CP, Tu Y-K, Munjal T, Schwechter B, Ho TS-Y, et al. The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci. 2013;33:6964–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

  46. Villasana LE, Klann E, Tejada-Simon MV. Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J Neurosci Methods. 2006;158:30–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, et al. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 2011;3:25.

    Google Scholar 

  48. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8:2531–7.

    Article  CAS  PubMed  Google Scholar 

  49. Noble W, Hange DP, Miller CCJ, Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol. 2013;4:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roqanian S, Ahmadian S, Nabavi SM, Pakdaman H, Shafiezadeh M, Goudarzi G, et al. Tau nuclear translocation is a leading step in tau pathology process through P53 stabilization and nucleolar dispersion. J Neurosci Res. 2022;100:1084–104.

    Article  CAS  PubMed  Google Scholar 

  51. Averbeck D, Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 2021;22:11047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davydova E, Ho AYY, Malecki J, Moen A, Enserink JM, Jakobsson ME, et al. Identification and characterization of a novel evolutionarily conserved lysine-specific methyltransferase targeting eukaryotic translation elongation factor 2 (eEF2). J Biol Chem. 2014;289:30499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic elongation factor 2 kinase a pharmacological target to regulate protein translation dysfunction in neurological diseases. Neuroscience. 2020;445:42–49.

    Article  CAS  PubMed  Google Scholar 

  54. Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer’s disease. Acta Neuropathol. 2023;166:47–57.

    CAS  Google Scholar 

  55. Goodman CA, Hornberger TA. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev. 2013;41:107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron. 2007;55:648–61.

    Article  CAS  PubMed  Google Scholar 

  57. Marx M-C, Billups D, Billups B. Maintaining the presynaptic glutamate supply for excitatory neurotransmission. J Neurosci Res. 2015;93:1031–44.

    Article  CAS  PubMed  Google Scholar 

  58. Pal MM. Glutamate: the master neurotransmitter and its implications in chronic stress and mood disorders. Front Hum Neurosci. 2021;15:722323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stevens CF, Williams JH. “Kiss and run” exocytosis at hippocampal synapses. Proc Natl Acad Sci USA. 2000;97:12828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoopmann P, Rizzoli SO, Betz WJ. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Cold Spring Harb Protoc. 2012;1:77–83.

    Google Scholar 

  61. Kavalali ET, Klingauf J, Tsien RW. Properties of fast endocytosis at hippocampal synapses. Philos Trans R Soc Lond B Biol Sci. 1999;354:337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. 2017;126:55718.

    Google Scholar 

  63. Yang S-T, Shi Y, Wang Q, Peng J-Y, Li B-M. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol Brain. 2017;7:61.

    Article  Google Scholar 

  64. Zawiślak-Fornagiel K, Ledwon D, Bugdol M, Romaniszyn-Kania P, Malecki A, Gorzkowska A, et al. The increase of theta power and decrease of alpha/theta ratio as a manifestation of cognitive impairment in Parkinson’s disease. J Clin Med. 2023;12:12041569.

    Article  Google Scholar 

  65. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M. EEG comparisons in early Alzheimer’s disease, dementia with lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain. 2008;131:690–705.

    Article  PubMed  Google Scholar 

  66. Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM, Sedelnikova OA. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene. 2005;24:7257–65.

    Article  CAS  PubMed  Google Scholar 

  67. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003;22:5834–47.

    Article  CAS  PubMed  Google Scholar 

  68. Mansuroglu Z, Benhelli-Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwab N, Tator C, Hazrati LN. DNA damage as a marker of brain damage in individuals with history of concussions. Lab Invest. 2019;99:1008–18.

    Article  PubMed  Google Scholar 

  70. Portillo M, Eremenko E, Kaluski S, Garcia-Venzor A, Onn L, Stein D, et al. SIRT6-CBP-dependent nuclear tau accumulation and its role in protein synthesis. Cell Rep. 2021;35:109035.

    Article  CAS  PubMed  Google Scholar 

  71. Wu CI, Wen H. Heightened protein-translation activities in mammalian cells and the disease/treatment implications. Natl Sci Rev. 2020;7:1851–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol. 2012;4:a012252.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA translation in Neurons-A matter of life and death. Neuron. 2017;96:616–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kindler S, Kreienkamp HJ. Dendritic mRNA targeting and translation. Adv Exp Med Biol. 2012;970:285–305.

    Article  CAS  PubMed  Google Scholar 

  75. Bramham CR, Wells DG. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci. 2007;8:776–89.

    Article  CAS  PubMed  Google Scholar 

  76. Schuman EM, Dynes JL, Steward O. Synaptic regulation of translation of dendritic mRNAs. J Neurosci. 2006;26:7143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mofatteh M. mRNA localization and local translation in neurons. AIMS Neurosci. 2020;7:299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sossin WS, Costa-Mattioli M. Translational control in the brain in health and disease. Cold Spring Harb Perspect Biol. 2019;11:a032912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener. 2023;18:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brilkova M, Nigri M, Kumar HS, Moore J, Mantovani M, Keller C, et al. Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep. 2022;40:111433.

    Article  CAS  PubMed  Google Scholar 

  81. Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci. 2014;37:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, et al. eEF2K/eEF2 pathway controls the excitation/inhibition balance and susceptibility to epileptic seizures. Cereb Cortex. 2017;27:2226–48.

    PubMed  Google Scholar 

  83. Taha E, Gildish I, Gal-Ben-Ari S, Rosenblum K. The role of eEF2 pathway in learning and synaptic plasticity. Neurobiol Learn Mem. 2013;105:100–6.

    Article  CAS  PubMed  Google Scholar 

  84. Verpelli C, Piccoli G, Zibetti C, Zanchi A, Gardoni F, Huang K, et al. Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. J Neurosci. 2010;30:5830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parihar VK, Limoli CL. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci USA. 2013;110:12822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 1994;369:488–91.

    Article  CAS  PubMed  Google Scholar 

  87. Duman JG, Dinh J, Zhou W, Cham H, Mavratsas VC, Paveskovic M, et al. Memantine prevents acute radiation-induced toxicities at hippocampal excitatory synapses. Neuro Oncol. 2020;20:655–65.

    Article  Google Scholar 

  88. Liu CW, Lee G, Jay DG. Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton. 1999;43:232–42.

    Article  CAS  PubMed  Google Scholar 

  89. Biswas S, Kalil K. The microtubule-associated protein tau mediates the organization of microtubules and their dynamic exploration of actin-rich lamellipodia and filopodia of cortical growth cones. J Neurosci. 2018;38:291–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci. 2001;114:1179–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to University of Texas Medical Branch, especially Dr. Aaron Bailey for the IP-MS assay and preliminary analysis, and ActiveMotif for the ChIP-Seq assay and analysis. This study was supported by funding from the National Institute of Health (R01CA256848, R01CA208535, R01CA255596, and R01CA219667). Figure illustrations were generated on BioRender.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Riya T and DRG; Methodology, Riya T; Investigation, Riya T, DZ, CAC, Rintu T, SKS, LFB; Writing – Original Draft, Riya T; Writing – Review & Editing, Riya T, DZ, CAC, Rintu T, SKS, LFB, RFM, JGD, DRG; Funding Acquisition, DRG; Resources, DRG; Supervision, DRG.

Corresponding author

Correspondence to David R. Grosshans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were conducted in accordance with institutional guidelines and regulations. No human participants were involved in this study. Studies involving mice were approved by The University of Texas Institutional Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, R., Zhang, D., Cronkite, C.A. et al. Subcellular functions of tau mediate repair response and synaptic homeostasis in injury. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03029-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03029-6

Search

Quick links