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Immune dysfunction is implicated in the aetiology of psychiatric, neurodevelopmental, and neurodegenerative conditions, but the
issue of causality remains unclear impeding attempts to develop new interventions. Using genomic data on protein and gene
expression across blood and brain, we assessed evidence of a potential causal role for 736 immune response-related biomarkers on
7 neuropsychiatric conditions by applying Mendelian randomization (MR) and genetic colocalisation analyses. A systematic three-
tier approach, grouping biomarkers based on increasingly stringent criteria, was used to appraise evidence of causality (passing MR
sensitivity analyses, colocalisation, False Discovery Rate and Bonferroni thresholds). We provide evidence for a potential causal role
of 29 biomarkers for 7 conditions. The identified biomarkers suggest a role of both brain specific and systemic immune response in
the aetiology of schizophrenia, Alzheimer’s disease, depression, and bipolar disorder. Of the identified biomarkers, 20 are
therapeutically tractable, including ACE, TNFRSF17, SERPING1, AGER and CD40, with drugs currently approved or in advanced clinical
trials. Based on the largest available selection of plasma immune-response related biomarkers, our study provides insight into
possible influential biomarkers for the aetiology of neuropsychiatric conditions. These genetically prioritised biomarkers now
require examination to further evaluate causality, their role in the aetiological mechanisms underlying the conditions, and
therapeutic potential.
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INTRODUCTION
Psychiatric, neurodevelopmental, and neurodegenerative condi-
tions (henceforth, neuropsychiatric conditions) are among the
leading causes of disability worldwide [1, 2]. These conditions are
typically chronic, and affect mood, perception, cognition, and
behaviour. Biological pathways contributing to these conditions
are poorly understood, impeding attempts to identify effective
new interventions [3]. For example, approximately one in three
individuals with depression or schizophrenia do not respond to
current medications which primarily target monoamine neuro-
transmitters [4]. This suggests that the current one-size-fits-all
approach to treatment for these conditions may not be tenable.
Therefore, identifying biological pathways underpinning neurop-
sychiatric conditions to help prioritise novel intervention targets
remains a key priority for mental health research [5].

Over the last two decades immune dysfunction has emerged as a
promising mechanistic candidate for several neuropsychiatric
conditions. For example, immune activating drugs induce depres-
sive symptoms in hepatitis C patients [6] and healthy volunteers [7].
Meta-analyses of case-control studies confirm atypical levels of
cytokines in blood plasma and cerebrospinal fluid of individuals
with schizophrenia, depression, and bipolar disorder [8, 9]. Neuroi-
maging with positron emission tomography shows evidence of
neuroinflammation in acute depression [10]. Nationwide cohort
studies indicate associations between autoimmune conditions,
infections and neuropsychiatric conditions, such as schizophrenia
[11, 12], attention deficit hyperactivity disorder (ADHD) [13],
Alzheimer’s disease [14], and depression [15].
However, inferring causality remains an important outstanding

issue because the observed associations between inflammation/
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immunity and neuropsychiatric conditions could be result of
residual confounding or reverse causation. Mendelian randomisa-
tion (MR), a genetic causal inference method that can minimise
these limitations by using genetic variants regulating levels/
activity of biomarkers as proxies [16–18], has provided some
evidence for a potential causal effect of IL-6 and CRP in the onset
of depression and schizophrenia [19, 20]. RCTs suggest that broad
spectrum anti-inflammatory drugs improve mood and psychotic
symptoms in people with depression [21] and schizophrenia [22],
but recent RCTs of monoclonal antibodies targeting specific
cytokine pathways have yielded null findings [23–25]. This
highlights the need for strengthening causal inference using
complementary techniques and data sources to inform appro-
priate selection of therapeutic target/agent in future trials.
Furthermore, as existing studies have typically focused on a small
number of immunological biomarkers, a comprehensive approach
allowing investigations across hundreds of available biomarkers is
necessary to obtain a more complete understanding of the role of
immune dysfunction in neuropsychiatric conditions.
We examined evidence of a potentially causal role for 736

genetically proxied immunological biomarkers (i.e., all immune-
response related biomarkers assayed in the plasma proteome)
on the onset of seven major neuropsychiatric conditions
(schizophrenia, bipolar disorder, depression, anxiety, ADHD,
autism, and Alzheimer’s disease), using cutting-edge genomic
causal inference methods, MR and genetic colocalisation. We
harnessed quantitative trait loci (QTL) data, capturing protein
abundance (pQTL) and protein-coding gene expression (eQTL) in
blood and brain, to gain mechanistic insights into potential
systemic (blood) and brain-specific effects. We conducted a
series of sensitivity analyses to examine the robustness of our
findings, including the possibility of reverse causation. We used
a systematic three-tier approach to appraise evidence of
causality, by grouping biomarkers based on increasingly
stringent criteria. Evidence of causality was complemented by
the assessment of therapeutic tractability of identified causal
biomarkers to inform future translation.

MATERIALS & METHODS
An overview of the analytic pipeline of the study can be found in
Fig. 1.

Genome-wide association studies (GWAS) of immunological
biomarkers
Blood plasma derived protein abundance (blood pQTLs). We used
data from the largest genomic investigation of the human plasma
proteome conducted in 34,557 European ancestry participants
(discovery sample) of the UK Biobank (UKB) [26] cohort,
comprising 2941 GWAS for 2923 unique proteins assayed using
the Olink Explore 3072 platform. Of these, we selected all proteins
included in the Olink Inflammation panels I & II (n= 736), which
represent the most comprehensive collection of immunological
biomarkers currently available (Supplementary Table 1). These 736
proteins formed the basis of our subsequent data extraction
strategy from GWAS on blood and brain protein coding gene
expression, and brain protein abundance. Details on the Olink
Explore panels, assaying and genotyping in UKB can be found in
the original publication [26].

Blood cell derived protein coding gene expression (blood eQTLs). We
used data from the eQTLGEN Phase I [27] study of blood-cell
derived gene expression in a sample of 31,684 individuals. The
study assessed the expression of 19,942 genes, including 559
immunological protein coding genes present in the Olink
Inflammation panels I & II.

Brain tissue derived protein abundance (brain pQTLs). To gain
insights into potential brain specific effects, we additionally looked
up the proteins of interest in the most comprehensive investiga-
tion of the brain proteome currently available [28]. It includes
levels of 8356 proteins in the dorsolateral prefrontal cortex
(DLPFC) of 400 individuals from the Religious Orders Study (ROS)
and Memory and Ageing Projects (MAP). Brain pQTLs were
available for 314 immunological proteins present in the Olink
Inflammation panels I & II.

Fig. 1 Analytic pipeline for assessing potentially causal immunological biomarkers for neuropsychiatric conditions and approach for
evidence appraisal. *Dorsolateral prefrontal cortex (DLPFC), **Cortex.
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Brain tissue derived protein coding gene expression (brain eQTLs). We
used the latest meta-analysis of brain cortex gene expression
(MetaBrain [29]) conducted in 6601 RNA-seq samples (N= 2683)
and covering 18,396 genes. This includes GWAS summary data for
the expression of 708 genes encoding 708 proteins of interest in the
brain cortex. Although MetaBrain provided data across different
brain regions, the sample sizes were relatively small, and for this
reason we used data for brain cortex rather than other brain regions
(e.g., hippocampus, N= 168).
Further details on the study samples, genotyping and QTL

analyses from the datasets used in the present study, can be found
in the original publications [26, 27, 29, 30].

GWAS of neuropsychiatric conditions
We used the latest (at the time of analysis) available GWAS summary
data on seven neuropsychiatric conditions. Specifically, two
neurodevelopmental: autism [31] (Ncases= 18,381, Ncontrols=
27,969), attention deficit hyperactivity disorder (ADHD) [32]
(Ncases= 38,691, Ncontrols= 186,843); four psychiatric: anxiety
[33] (Ncases= 7016, Ncontrols= 14,745), depression [34] (Ncases=
294,322, Ncontrols= 741,438), bipolar disorder [35] (Ncases=
41,917, Ncontrols= 371,549), schizophrenia [36] (Ncases= 76,755,
Ncontrols= 243,649); and one neurodegenerative condition: Alz-
heimer’s disease [37] (Ncases= 71,880, Ncontrols= 383,378). Con-
sidering that the depression, bipolar disorder and Alzheimer’s
disease GWASs included data from UKB, and this overlap with the
GWASs of the plasma proteome may influence our findings, we
additionally used available data on these three phenotypes
excluding UKB for sensitivity analyses (depression: Ncases=
166,773, Ncontrols= 507,679; bipolar disorder: Ncases= 40,463,
Ncontrols= 313,436; Alzheimer’s disease: Ncases= 39,918, Ncon-
trols= 358,140). Details on the study samples, phenotype definition
and genotyping can be found in the original publications [31–37].

Two-sample mendelian randomization (MR)
MR utilises the special properties of germline genetic variants to
strengthen causal inference within observational data [16]. Here
we implemented MR as an instrumental variables analysis using
common genetic variants as instruments. The method can yield
unbiased causal effect estimates under assumptions that the
instruments should satisfy: (1) they must be associated with the
exposure, (2) they must not be associated with any confounders of
the exposure outcome associations, (3) they should operate on
the outcome entirely through the exposure (i.e., no horizontal
pleiotropy) [38].
For the present study, we performed two-sample MR, in which

instrument-exposure and instrument-outcome effect sizes and
standard errors were extracted from separate GWAS conducted in
independent samples but representative of the same underlying
population [39].

Instrument selection. For each exposure (immunological protein
abundance, protein-coding gene expression), we used as genetic
instruments common genetic variants that met the genome-wide
significance threshold (p ≤ 5*10−08) and were independent
(r2 < 0.001; 10,000 kb). We assessed the strength of each instru-
ment by estimating their F-statistic (F ≥ 10 indicates adequate
instrument strength) [40]. Genetic instruments with an F-statistic
<10 were excluded to minimise weak instrument bias. As
instruments, we selected a total of 1731 plasma pQTLs for 663
unique proteins; 1209 blood cell-derived eQTLs for 499 protein
coding genes; 46 DLPFC pQTLs for 45 proteins; 528 brain cortex
eQTLs for 420 protein-coding genes.
For blood pQTLs (UKB) and eQTLs (eQTLGEN), both cis and trans

genetic instruments were available. Genetic instruments were
categorised as cis-acting when they were located within proximity
(±1 Mb) to the gene regulatory region, and as trans-acting when
located outside this window. Common genetic variants acting in

cis to the protein-encoding gene are more likely to influence
mRNA expression and protein levels (thus being less pleiotropic)
[41]. On the other hand, trans-acting variants, are more likely to be
pleiotropic due to their distance from the protein-encoding gene,
but their inclusion can potentially increase the proportion of
variance explained in the exposure, increasing the statistical
power for MR analyses [41, 42]. Acknowledging the above, we
followed two complementary approaches: a biologically informed
approach in which we used cis only instruments for our analyses,
and a conventional approach allowing the inclusion of cis and/or
trans instruments.
For brain pQTLs and eQTLs only cis-acting variants were used,

because the Wingo et al. [28], study reported cis-pQTLs only. The
MetaBrain study reported only the statistically significant trans-
eQTLs, without information on the respective regions around
them, rendering genetic colocalization analyses for the trans-
acting variants impossible (details on genetic instruments used
across analyses in Supplementary Tables 2–5).

Statistical analyses. For each exposure, genetic instrument effect
sizes and standard errors were extracted from each neuropsychia-
tric condition GWAS, and the variant-exposure, variant-outcome
alleles were harmonised to ensure that effect sizes correspond to
the same allele. If the exposure had only one associated variant,
Wald ratio was used to generate causal effect estimates, and two-
term Taylor expansion was used to approximate standard errors
[29, 43]. When more than one variant were available for an
exposure, inverse variance weighted (IVW) [44] regression was
used. In the case of IVW estimates we additionally assessed
evidence on the heterogeneity of the genetic instruments using
the Cochran’s Q statistic as well as the potential pleiotropy
influencing the causal effect estimates using the Egger intercept.
Details on the Wald ratio and IVW methods as well as Cochran’s Q
and Egger intercept can be found in Supplementary Note 1. We
used the Benjamini-Hochberg method [45] to control false
discovery rate (FDR) across our analyses (FDR < 5%). In addition,
we appraised findings using a strict Bonferroni-corrected p-value
threshold 2*10−06 (0.05/ 24,598).

Genetic colocalisation
Colocalisation analysis can complement MR by elucidating a
distinct aspect of the identified causal relationship between an
exposure and an outcome [46]. Specifically, colocalisation allows
the assessment of the hypothesis that any identified causal effects
are driven by the same causal variant influencing both exposure
and outcome, instead of distinct causal variants that are in linkage
disequilibrium (LD) with each other [47]. In practice, the approach
harnesses SNP coverage within the same specified locus for two
traits of interest and tests whether the association signals for each
trait at the locus are suggestive of a shared causal variant [47].
Considering that genetic instruments used in our analyses

comprised either single variants (MR Wald ratio estimates) or
multiple cis and/or trans variants (MR IVW estimates), we followed
three distinct approaches for variant selection for colocalisation
analyses to help prioritise (where possible) variants with the
highest biological relevance for the exposure of interest.
Specifically, when the instrument consisted of variants of which
at least one was cis, the cis variant(s) was tested for colocalisation.
If the instrument consisted of multiple trans variants, we used the
trans variant with the smallest p-value for colocalisation. Finally, if
the instrument was a single variant, the variant was tested for
colocalisation regardless of whether it was cis or trans.
We extracted regions within ±500KB around the instrumented

variant and implemented the algorithm described by Robinson
et al. [48] to perform pairwise conditional and colocalisation
(PWCoCo) analysis, which assesses all conditionally independent
signals in the exposure dataset region against all conditionally
independent signals in the outcome data. Genotype data from
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mothers in the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort [49] were used as the LD reference panel
(N= 7733; for ALSPAC cohort details and available genotype data
see Supplementary Note 2). We ran these analyses using the
default settings, as suggested by the authors in the original
publications [42, 47]. Evidence of colocalisation was considered if
there was an H4 posterior probability of both traits having a
shared causal variant ≥0.8, as proposed by the authors of the
method. Although we did not exclude the wider Major
Histocompatibility Complex (MHC) region for these analyses, we
marked the genetic instruments that were found to reside within
it (25–34 Mb) and recommend caution when interpreting their
colocalisation evidence due to the complex linkage disequilibrium
(LD) structure of the region [50].

Steiger filtering
We performed Steiger filtering to assess whether causal effect
estimates were influenced by reverse causation [51]. The method
assesses whether the genetic variants proxying the exposure
explain more variance in the outcome, which, if true, suggests that
the primary phenotype influenced by the variant is the outcome
rather than the exposure.

Drug target prioritisation and validation
We used a three-tier system to prioritise evidence of causality for
the biomarkers, and to explore their potential as drug targets. Tier
A included findings that had evidence which passed the
Bonferroni threshold (≤1.8*10−06), passed Steiger filtering, and
passed colocalisation (H4 ≥ 0.8). Tier B included findings that
passed the FDR threshold (<%5), passed Steiger filtering, and
passed colocalisation (H4 ≥ 0.8). Importantly, for both Tiers A and
B, the biomarker had to be proxied by genetic instruments that
were cis variants (i.e., only findings from the biologically informed
approach). Tier C included findings where the MR analyses
allowed the inclusion of trans variants and fulfilled the same
requirements as Tier B. Across all tiers, it was additionally required
for the genetic instruments (if n instruments >2) to show no
evidence of heterogeneity as defined by the Cochran’s Q statistic
and the MR estimates (if n instruments >3) no evidence of
pleiotropy as defined by the Egger intercept.
When there was Tier A, B or C evidence for a biomarker across

different QTLs (eQTL & pQTL) and tissue types (brain & blood), we
performed genetic colocalisation analyses using PWCoCo between
the QTLs of the biomarker. This approach allowed us to investigate
whether the effects on the outcome were driven by the same
underlying variant across QTLs and tissue types, which increases
reliability of that molecular marker’s relationship with the
condition [52]. These analyses were not conducted in cases that
the QTLs were residing in the MHC region.
We looked up potential therapeutic tractability of the identified

Tier A, B or C biomarkers using small molecule, antibody binding,
and/or any other treatment modality [53] in the Open Targets
Platform (https://platform.opentargets.org/). The Open Targets
Platform is a freely available online resource for drug target
identification and prioritisation that integrates genetic and
genomic data with existing evidence on protein structure and
function, and information on approved drugs, and ongoing clinical
trials [53, 54]. Open Targets have categorised target tractability
based on eight buckets/groups for small molecules and nine
buckets/groups for antibodies (see https://github.com/chembl/
tractability_pipeline_v2). In order to aid interpretation, we
categorised tractability into three mutually exclusive groups, in
line with previous work [55]: Group 1. Strong druggability
evidence: buckets 1, 2 & 3 for small molecules, antibodies, other
modalities; Group 2. Likely or potentially druggable: buckets 4–8
for small molecules, 4 & 5 for antibodies; Group 3: Little or
unknown druggability: remaining buckets. Data retrieved on 21/
01/2025.

Enriched pathways and phenotypes for the identified causal
biomarkers
To aid the interpretation of our findings and elucidate potential
biological pathways underlying the identified causal biomarkers,
we performed gene-set enrichment analyses using GeneNetwork
[56]. Developed by the MetaBrain consortium, GeneNetwork
allows enrichment analyses using terms available on the Gene
Ontology (GO), KEGG and Reactome pathway resources, as well as
the Human Phenotype Ontology (HPO) database. We used the
GeneNetwork browser (analyses conducted on 21/01/2025) and
entered in the analyses the biomarkers that satisfied the Tier A, B
and C criteria for each neuropsychiatric condition. These analyses
were conducted only for neuropsychiatric conditions with at least
five identified causal biomarkers (satisfying Tier A, B, or C criteria).

Bi-directional two-sample MR
To assess reverse causation, we tested the causal effects of genetic
liability to each neuropsychiatric condition on circulating immu-
nological proteins. Genetic instruments for each condition were
extracted from the respective GWAS using a p-value threshold of
≤5*10−08 (r2 < 0.001; 10,000 kb). The only exceptions were autism
and anxiety, for which a p-value threshold of ≤5*10−07 was used
as there were insufficient instruments at the genome-wide
significance threshold (2 and 1 instrument respectively). Details
on the instruments for each neuropsychiatric condition can be
found in Supplementary Table 6. Genetic instruments were then
extracted from the GWAS of the immunological proteins (736
proteins) [26] and their alleles were harmonised. Causal effects
were estimated using the IVW approach (Supplementary Note 1)
[44]. Due to the number of tests conducted (7 phenotypes*736
immunological biomarkers available in UKB) we used Bonferroni
correction (p ≤ 9.7*10−06).

Software
Analyses were carried out using the computational facilities of the
Advanced Computing Research Centre of the University of Bristol
(http://www.bris.ac.uk/acrc/). Blood plasma pQTL data and blood
cell derived eQTL data were extracted and processed using the
gwasvcf package version 1.0 in R (https://github.com/MRCIEU/
gwasvcf) [57]. The summary data from MetaBrain were lifted over
from GRCh38 to GRCh37 using the UCSC liftover tool [58] to match
the build of the rest of the data. Two-sample MR, Steiger filtering,
and bi-directional MR analyses were conducted using functions
from the TwoSampleMR R package version 0.5.6 (https://
github.com/MRCIEU/TwoSampleMR) [59] and the mrpipeline R
package (https://github.com/jwr-git/mrpipeline). The PWCoCo
algorithm was implemented using the Pair-Wise Conditional
analysis and Colocalisation analysis package v1.0 (https://
github.com/jwr-git/pwcoco) [48]. Pathway and phenotype enrich-
ment analyses were conducted using the GeneNetwork browser
v2.0 (https://www.genenetwork.nl/) [56].

RESULTS
Immunological drivers for neuropsychiatric conditions
In total, we found evidence for 151 potentially causal relationships
corresponding to 83 unique immunological biomarkers that
passed the FDR < 5% (Supplementary Table 7). Among these 29
unique biomarkers met our strict Tier A, B or C criteria for causal
evidence (Fig. 2). Eight biomarkers (4 unique proteins and 4 genes)
met the most stringent Tier A criteria (i.e., passed the stringent
Bonferroni threshold: 1.82*10−06, Steiger filtering, showed no
evidence of heterogeneity and pleiotropy (in cases of IVW
estimates), were supported by evidence of colocalisation, and
consisted of cis variants). Seventeen biomarkers (5 unique proteins
and 12 genes) met Tier B criteria (i.e., passed the FDR threshold,
Steiger filtering, showed no evidence of heterogeneity and
pleiotropy (in cases of IVW estimates), were supported by
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evidence of colocalisation, and the instruments consisted of cis
variants). Seven effects corresponding to 6 unique proteins and
one gene, met Tier C criteria (genetic instruments consisted of cis
and/or trans variants and fulfilled the Tier B requirements).

Schizophrenia (n= 57) and Alzheimer’s disease (n= 28), followed
by depression (n= 24), bipolar disorder (n= 24) and had the
highest number of potentially causal immunological markers after
FDR correction.

Fig. 2 Summary of the Tier A, B and C findings of the analyses investigating potential effects of genetically proxied immunological biomarkers
across neuropsychiatric conditions.
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Condition specific findings
Neurodevelopmental conditions. For autism, we identified 6
potentially causal immunological biomarkers after FDR correction,
two of which met Tier B/C criteria. The effect of genetically proxied
expression of ANXA1 in blood tissue (FDR= 0.01; H4 > 0.8) fulfilled
the Tier B criteria. Genetically proxied levels of CEBPA in blood
fulfilled the Tier C criteria (FDR= 0.01, H4 > 0.8). For ADHD, 10
potentially causal immunological biomarkers were identified after
FDR, of which genetically proxied expression of GCHFR in blood
fulfilled the Tier B criteria (FDR= 0.01; H4 > 0.8). Detailed MR and
colocalisation findings are available in Supplementary Tables 7, 8.

Psychotic and affective disorders. We found 57 potentially causal
immunological biomarkers for schizophrenia after FDR correction,
of which 4 met the Tier A criteria. Specifically, we found evidence
for genetically proxied expression of PDIA3 in the blood
(p= 7*10−08, H4 > 0.8) along with genetically proxied levels of
NAGA in the blood (p= 6.9*10−10, H4 > 0.8). There was also
evidence for genetically proxied expression and levels of AGER in
the blood (p= 1.8*10−09, p= 6.9*10−14, H4 > 0.8, respectively),
although these results should be treated with caution as the lead
SNPs for AGER reside in the MHC region. In addition, 12 met the
Tier B criteria. Specifically, we found evidence of potential causal
effects for genetically proxied expression of ACE in blood
(FDR= 0.007; H4 > 0.8) and brain cortex (FDR= 0.002; H4 > 0.8),
genetically proxied expression of SERPING1 (FDR= 0.002; H4 > 0.8)
in blood, genetically proxied expression of TNFRSF17 (FDR= 0.02;
H4 > 0.8), CD40 (FDR= 0.004; H4 > 0.8), SERPINI1 (FDR= 0.04;
H4 > 0.8), EVI5 (FDR= 0.003, H4 > 0.8) and NAGA (FDR= 0.001,
H4 > 0.8) in brain cortex, and genetically proxied levels of RABEP1
(FDR= 0.01; H4 > 0.8), DNER (FDR= 0.005; H4 > 0.8), PDIA3 (FDR=
0.003, H4 > 0.4) and CD40 (FDR= 0.05, H4 > 0.8) in blood.
Furthermore, BTN2A1 (FDR= 5*10−15; H4 > 0.8) and MYOM3
(FDR= 0.01, H4 > 0.8) fulfilled the Tier C criteria, both based on
blood trans pQTLs (Supplementary Tables 7, 8).
Among the 24 potentially causal immunological biomarkers

identified for depression, genetically proxied expression of EP300
in blood satisfied the tier A criteria (p= 2*10−09, H4 > 0.8).
Moreover, genetically predicted expression of AMN (FDR= 0.03,
H4 > 0.8), SEPP1 (FDR= 0.04, H4 > 0.8), RABGAP1L (FDR= 0.004,
H4 > 0.8) in blood and FCN1 (FDR= 0.02, H4 > 0.8) in brain cortex,
satisfied the tier B criteria. Genetically proxied levels of BTN2A1
(FDR= 4.8*10−06, H4 > 0.8) and PAPPA (FDR= 0.009, H4 > 0.8) in
blood (FDR= 4*10−06; H4 > 0.8) fulfilled the Tier C criteria. These
findings were largely consistent in sensitivity analyses using the
depression GWAS excluding UKB (Supplementary Tables 7 and 8).
For bipolar disorder, we found 24 potentially causal biomarkers.

Among these, genetically proxied expression of SCRN1
(p= 1.05*10−06, H4 > 0.8) in blood satisfied the tier A criteria,
while genetically predicted expression of CD40 (FDR= 0.002;
H4 > 0.8) in brain cortex satisfied the tier B criteria. Genetically
proxied expression and levels of DNPH1 in blood (FDR= 0.04;
FDR= 0.03, H4 > 0.8, respectively) fulfilled the Tier B criteria.
Genetically proxied levels of BTN2A1 in blood (FDR= 3.8*10−05,
H4 > 0.8) fulfilled the Tier C criteria. In sensitivity analyses using
the bipolar disorder GWAS excluding UKB, estimates were
consistent and confidence intervals overlapping with our main
findings (Supplementary Tables 7, 8).
For anxiety, no estimated causal effects of genetically proxied

immunological biomarkers surpassed the FDR threshold (<5%;
Supplementary Tables 7, 8).

Alzheimer’s disease. We identified 28 potentially causal biomar-
kers for Alzheimer’s disease. Among these, genetically proxied
expression of CR1 (FDR= 5.3*10−14; H4 > 0.8) in the brain cortex
fulfilled the Tier A criteria as well as genetically predicted levels of
APOC1 (p= 2.4*10−96, H4 > 0.8) and PRSS8 (p= 3.4*10−07,
H4 > 0.8) in blood. In addition, genetically proxied expression of

ACE in blood (FDR= 0.005; H4 > 0.8) and brain (FDR= 0.001;
H4 > 0.8) fulfilled the Tier B criteria. Genetically proxied levels of
KLRB1 (FDR= 0.001, H4 > 0.8) andCHRDL1 (FDR= 2.5*10−05)
fulfilled the Tier C criteria. In sensitivity analyses using the
Alzheimer’s disease GWAS excluding UKB, the estimates for the
effect of APOC1 were directionally consistent with our main
findings but the confidence intervals were not overlapping
(Supplementary Tables 7, 8).

Drug target identification, prioritisation, and validation
In total, 20 unique biomarkers meeting our strict Tier A, B or C
criteria for causal evidence appeared to be therapeutically
tractable (Supplementary Table 9). Notably, ACE, which had Tier
B evidence for both schizophrenia and Alzheimer’s, has approved
drugs for cardiovascular indications. AGER (Tier A evidence for
schizophrenia) and CD40 (Tier B evidence for both schizophrenia
and bipolar disorder) have drugs in advanced clinical trials.
Furthermore, TNFRSF17 (Tier B evidence for schizophrenia)
SERPING1 (Tier B evidence for schizophrenia) have approved
drugs. See Supplementary Table 10 for details on drugs approved
or in clinical trials for ACE, AGER, CD40, SERPING1, and TNFRSF17.
Across our analyses, five immunological biomarkers were

supported by evidence from different QTL types. Specifically, the
effects of ACE on schizophrenia and Alzheimer’s disease were
supported by brain cortex and blood eQTLs, the effects of CD40 on
schizophrenia were supported by blood pQTLs and brain cortex
eQTLs, the effects of NAGA on schizophrenia were supported by
blood pQTLs and brain cortex eQTLs, while the effects of DNPH1
on bipolar disorder were supported by blood pQTLs and eQTLs.
For each biomarker the direction of effect estimates across QTL
types was convergent (Supplementary Fig. 1), while there was
evidence of colocalisation between them, suggesting that the
identified effects are likely to be driven by the same underlying
variant (Supplementary Table 11). It is worth noting here that
although we had evidence from blood pQTLs and eQTLs for a
potential effect of AGER on schizophrenia, we did not test for
colocalisation between the QTLs due to the lead SNPs residing in
the MHC region.

Enriched pathways and phenotypes for the identified causal
biomarkers
Analyses were conducted for schizophrenia, depression, and
Alzheimer’s disease as these had enough (≥5) biomarkers
satisfying the Tier A, B, or C criteria. The findings of the enrichment
analyses can be found in Supplementary Table 12. For schizo-
phrenia, 13 biomarkers were entered in GeneNetwork, and six for
depression and Alzheimer’s disease (respectively). In the case of
schizophrenia, there were some patterns in the enrichment
findings related to reproductive phenotypes (e.g., HP: infertility,
p= 2*10−04) and pathways implicated in microbial response (e.g.,
REACTOME: Beta defensins, p= 4*10−05). In the case of depres-
sion, there were some patterns in the findings related to fatty acid
phenotypes (e.g., HP: Abnormal fatty acid concentration,
p= 5*10−04) and pathways involved in NF-kappaB signalling
(e.g., GO: negative regulation of I-kappaB kinase/NF-kappaB
signalling, p= 6*10−08). In the case of Alzheimer’s disease
enrichment findings were less consistent with the exception of
some evidence of enrichment for some ageing-related pheno-
types (e.g., ptosis, p= 7*10−05).

Evidence of reverse causation
In bidirectional MR analyses, none of the estimated causal effects
of genetic liability to autism, ADHD, schizophrenia, bipolar
disorder, or anxiety on levels of immunological proteins, surpassed
the Bonferroni correction threshold (p ≤ 9.7*10−06). However, we
found evidence of causal effects of genetic liability to depression
on levels of CXCL17 (p= 1.7*10−07), and PRSS8 (p= 6.6*10−06).
Similarly, we found that genetic liability to Alzheimer’s disease had
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causal effects on levels of APOF (p= 2.4*10−07), and IL32
(p= 7*10−11). See Supplementary Table 13.

DISCUSSION
Recent decades have seen limited progress in new therapeutics
for neuropsychiatric conditions. Despite converging evidence
implicating immune dysfunction in several neuropsychiatric
conditions, the success of immunotherapy clinical trials remains
elusive. One key barrier is the lack of a clear understanding of
causality to inform appropriate selection of therapeutic target/
agent. In this study, using cutting-edge genomic causal inference
methods applied to largescale proteomic and gene expression
data from blood and brain, we have assessed evidence for
potential causality for the largest available selection of immune-
response related biomarkers in relation to the onset of seven
neuropsychiatric conditions. We provide evidence for causality for
29 immunological biomarkers providing evidence suggesting that
both brain specific and systemic immune response may contribute
to pathogenesis of neuropsychiatric conditions, especially schizo-
phrenia, Alzheimer’s disease, depression, and bipolar disorder.
Among the 29 identified immunological biomarkers, eight

satisfied the strictest criteria for potential causality (Tier A).
Specifically, AGER, PDIA3 and NAGA appeared to have an effect on
schizophrenia. Existing evidence suggests that the three genes are
implicated in glycosylation [60–62]. Glycosylation is a complex
biological process related to the production of glycans, and has
been recently hypothesised to be implicated in the aetiology of
schizophrenia [63]. In the case of Alzheimer’s disease, CR1 and
APOC1 appeared to have Tier A evidence of effects, in line with
existing literature implicating them in the aetiopathogenesis of
condition [64, 65]. SCRN1, identified to have effects on bipolar
disorder, is a novel phosphorylated tau binding protein that has
been shown to be abundant in amyloid plaques [66] and has been
recently identified as shared in cross-trait analyses between bipolar
disorder and inflammatory bowel disease [67]. Similarly, in depres-
sion, EP300, satisfying Tier A evidence, has been identified in cross-
trait analyses as shared between depression and insomnia [68].

From prioritised biomarkers to drug targets for
neuropsychiatric conditions
Among the biomarkers prioritised in the present project, we found
that 20 of them are potentially druggable. Among them, AGER
(schizophrenia), CD40 (schizophrenia & bipolar), TNFRSF17 (schizo-
phrenia), ACE (schizophrenia & Alzheimer’s) and SEPRING1 (schizo-
phrenia) have drugs approved or in advanced clinical trials for
several indications including cardiovascular and autoimmune
conditions. Before deriving conclusions on the potential opportu-
nities for drug repurposing, the present findings should be viewed in
the context of important biological and methodological considera-
tions outlined below.

Pathways from transcription to translation. A small proportion of
the identified biomarkers were linked to neuropsychiatric condi-
tions via gene expression and protein abundance. Specifically, the
effects of DNPH1 on bipolar disorder were via gene expression and
protein abundance in blood, the effects of PDIA3 on schizophrenia
were via gene expression and protein abundance in blood, while
the effects of NAGA and CD40 on schizophrenia were via protein
abundance in blood and gene expression in brain cortex. In
addition, the direction of the identified effects was concordant
across gene expression and protein abundance which is encoura-
ging when it comes to drug target validation and prioritisation [52].
However, a large number of our findings were not supported by

both protein abundance and gene expression and in cases that it
did, the effect estimates were discordant (this was the case for the
effects of AGER on schizophrenia via gene expression and protein
abundance in blood). This can substantially impact the potential of

the identified biomarkers as drug targets. One possible explanation
for this are differences in power across the datasets (e.g., the brain
QTL data were based on a sample of 400 individuals). Another
possibility may be alternative splicing events. Alternative splicing
has a central role in the pathway from transcription to translation as
it results in the production of multiple proteins via different
signalling pathways [69]. Alternative splicing events may play an
important role in neuropsychiatric conditions, such as schizophrenia
[70]. Future investigations incorporating datasets that capture the
pathway from transcription to translation (i.e, eQTLs, sQTLs and
pQTLs) are necessary to further validate the potential of the current
prioritised biomarkers as drug targets, particularly considering that
most existing drugs act via protein activity rather than gene
expression.

Tissue specific effects. A number of the identified biomarkers had
effects on neuropsychiatric conditions via QTLs measured in
blood. This suggests that not only brain-specific immunological
processes are important in these conditions, but also systemic
[71]. In addition, two of the prioritised markers (CD40 and ACE)
were supported by effects of the biomarkers measured in blood as
well as brain cortex. Although this might seem encouraging with
regards to potential therapeutic applications, it is difficult to derive
conclusions from the present evidence. Specifically, CD40 has low
tissue specificity and ACE is predominantly expressed in the small
intestine. Drug targets from genes with low tissue specificity (CD40
in this case) or genes that have enhanced expression in tissues
other than the one investigated (ACE in this case) have the risk of
leading to off-target side effects [72, 73]. A careful investigation of
the identified biomarkers in the context of their tissue-enhanced
expression is necessary in order further understand their potential
as drug targets.

Effects across neuropsychiatric conditions. In the case of ACE and
CD40 we found evidence of effects on more than one neuropsy-
chiatric condition. Specifically, we found that decreased expression
of ACE in blood and brain cortex is linked to increased risk of both
schizophrenia and Alzheimer’s disease. This is consistent with
results from previous MR studies [74, 75]. Considering that ACE
inhibitors are widely used for the management of hypertension,
these findings require further investigation. The identified effect for
Alzheimer’s particularly may be a result of survival bias, considering
that hypertension can lead to early mortality and therefore
individuals may not live long enough to be diagnosed with the
condition [76, 77]. Beyond its effects on hypertension, ACE
inhibition in rats leads to memory and learning impairments [78].
Therefore, another possibility is that ACE inhibition does not
causally influence risk to the conditions per se, but some of their
common phenotypic expressions, such as cognitive decline, which
is common to both schizophrenia and Alzheimer’s disease. There-
fore, choosing the right outcome would be as important as
choosing the right drug target in future RCTs. Similarly, CD40
expression in brain may influence risk of both schizophrenia and
bipolar disorder by causally influencing psychotic symptoms, which
are common to both conditions. These possibilities require further
investigation.

Effects on developmental stage and progression. Our study design
allowed us to investigate the causal effects of immunological
biomarkers on the onset of neuropsychiatric conditions but not
progression [79]. Identifying actionable treatment targets can be
particularly complex for conditions with neurodevelopmental
origins such as schizophrenia, where pathogenic changes could
take place well before the emergence of clinical symptoms [80].
Therefore, the question of the potential utility of the identified
targets in conditions with neurodevelopmental origins remains,
and requires careful consideration of conceptual, methodological,
and ethical aspects.
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Limitations
Our study has some methodological limitations. First, the study
was conducted using GWAS data of European ancestry individuals,
and therefore generalisability of our findings to other populations
remains a concern. Second, although we used the largest GWAS
data available the possibility of limited statistical power cannot be
excluded, particularly for brain pQTL data, and the anxiety GWAS.
Third, methodological discrepancies across datasets (e.g., mass
spectrometry in brain pQTLs, antibody-based methods in blood
pQTLs), might have influenced the potential of the study to
identify converging effects across blood and brain. Fourth, our
enrichment analyses were based on a small number of biomarkers
(13 in schizophrenia, 6in depression and Alzheimer’s), which may
limit the reliability of these findings. Fifth, UKB proteomic GWAS
had some sample overlap with some of the neuropsychiatric
conditions, notably Alzheimer’s disease (>50%), depression (34%),
and bipolar disorder (14%). Sample overlap can introduce a bias
toward the observational estimate [81], though this is unlikely to
adversely influence hypothesis testing [82]. Moreover, in sensitiv-
ity analyses using Alzheimer’s, depression and bipolar disorder
GWAS excluding UKB the effect estimates were consistent with
the ones derived from the primary analyses and the confidence
intervals were overlapping. Sixth, though our results are sugges-
tive of causal relationships we are unable to prove causality due to
potential horizontal pleiotropy or violations of other MR assump-
tions such as gene-environment equivalence and consistency of
treatment effects. Further studies using different data sources
(e.g., measured levels of the biomarkers) and methodological
approaches aligning with the principles of causal triangulation [83]
in diverse populations (e.g., in terms of ancestry and/or age
groups) are necessary in order to establish causality. Finally,
although we assessed the possibility of reverse causation, it is
difficult from these analyses to derive conclusions on the
individual potentially causal relationships between genetic liability
to neuropsychiatric conditions and levels of biomarkers. This can
be a promising avenue for research focusing on understanding
the health-related outcomes of these conditions and future work
allowing in depth investigations (e.g., assessing the potential
influence of pleiotropy across conditions) of these relationships is
necessary.

CONCLUSIONS
Using a comprehensive analytic approach allowing the integra-
tion of genomic data on protein and gene expression across
blood and brain, we identify a potential causal role for 29
immunological biomarkers on seven neuropsychiatric condi-
tions. However, considering the complexity of the phenotypes
examined, further investigations of the identified biomarkers
are required, using different data sources, methodological
approaches and diverse populations to establish their potential
role in the aetiology of neuropsychiatric conditions. This way we
can expect new and better treatments for individuals with
neuropsychiatric conditions.
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