Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell transcriptomics reveals Sox6 positive interneurons enriched in the prefrontal cortex of female mice vulnerable to chronic social stress

Abstract

Major depressive disorder (MDD) is a prevalent mental illness that significantly impacts global health, with women showing twice the prevalence of men. This study employed the chronic social defeat stress (CSDS) model in female mice to investigate cellular and molecular changes in the prefrontal cortex (PFC) associated with depressive-like behaviors. Using single-nucleus RNA sequencing (snRNA-Seq), we examined transcriptomic alterations across various cell types in the PFC. Our results revealed that interneurons exhibited the most significant transcriptomic changes among all analyzed cell types. Notably, we found the Sox6+ interneurons (Sox6+Int) were enriched in the CSDS susceptible group. This enrichment was associated with enhanced inflammatory and immune responses, as well as alterations in synaptic function and mitochondrial pathways. Furthermore, we observed significant changes in cell-cell communication patterns, particularly between Sox6+Int and oligodendrocyte precursor cells (OPC). Weighted gene co-expression network analysis (WGCNA) identified several gene modules in Sox6+Int associated with specific depressive-like behaviors, implicating pathways related to inflammation, autophagy, and synaptic function. In particular, specific knockdown of Sox6 in neurons reversed the depressive-like behaviors. These findings provide novel insights into the cellular and molecular mechanisms underlying MDD in females, highlighting the potential role of Sox6+Int in stress-induced depression. Our study not only extends our understanding of the neurobiological basis of depression but also identifies potential therapeutic targets for sex-specific interventions in MDD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of the CSDS model.
Fig. 2: Identification of cell types.
Fig. 3: Cell type-specific DEGs changes and enrichment pathways.
Fig. 4: Interneuron (Int) subtypes identification and specific functions.
Fig. 5: The hub of Sox6+Int in the CSDS model.
Fig. 6: Specifically knocked down Sox6 in neurons ameliorated depressive-like behaviors.

Similar content being viewed by others

Data availability

All data reported in this paper will be shared by the lead contact upon request. All raw sequencing data generated by this study are available in the Gene Expression Omnibus (GEO) repository under the accession number GSE291951.

Code availability

Code reported in this paper will be shared by the lead contact upon request.

References

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–50.

    Article  PubMed Central  Google Scholar 

  2. Thompson SM. Modulators of GABA(A) receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology. 2024;49:83–95.

    Article  PubMed  Google Scholar 

  3. Lu J, Xu X, Huang Y, Li T, Ma C, Xu G, et al. Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2021;8:981–90.

    Article  PubMed  Google Scholar 

  4. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–12.

    Article  Google Scholar 

  5. Seney ML, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. Opposite molecular signatures of depression in men and women. Biol Psychiatry. 2018;84:18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Corrigendum: Sex-specific transcriptional signatures in human depression. Nat Med. 2018;24:525.

    Article  PubMed  Google Scholar 

  7. Lu CL, Ren J, Mo JW, Fan J, Guo F, Chen LY, et al. Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability. Biol Psychiatry. 2022;92:204–15.

    Article  PubMed  Google Scholar 

  8. Wu J, Li Y, Huang Y, Liu L, Zhang H, Nagy C, et al. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat Neurosci. 2023;26:1352–64.

    Article  PubMed  Google Scholar 

  9. Zhang M, Zhi N, Feng J, Liu Y, Zhang M, Liu D, et al. ITPR2 mediated calcium homeostasis in oligodendrocytes is essential for myelination and involved in depressive-like behavior in adolescent mice. Adv Sci. 2024;11:e2306498.

    Article  Google Scholar 

  10. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li HH, Liu Y, Chen HS, Wang J, Li YK, Zhao Y, et al. PDGF-BB-Dependent neurogenesis buffers depressive-like behaviors by inhibition of GABAergic projection from medial septum to dentate gyrus. Adv Sci. 2023;10:e2301110.

    Article  Google Scholar 

  12. Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, et al. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci USA. 2021;118:e2019409118.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, et al. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron. 2016;90:969–83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hultman R, Mague SD, Li Q, Katz BM, Michel N, Lin L, et al. Dysregulation of prefrontal cortex-mediated slow-evolving limbic dynamics drives stress-induced emotional pathology. Neuron. 2016;91:439–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry. 2022;27:445–65.

    Article  PubMed  Google Scholar 

  17. Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F, et al. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab. 2023;5:2220–36.

    Article  PubMed  Google Scholar 

  18. Lin S, Huang L, Luo ZC, Li X, Jin SY, Du ZJ, et al. The ATP level in the medial prefrontal cortex regulates depressive-like behavior via the medial prefrontal cortex-lateral habenula pathway. Biol Psychiatry. 2022;92:179–92.

    Article  PubMed  Google Scholar 

  19. Han S, Li XX, Wei S, Zhao D, Ding J, Xu Y, et al. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: a randomized double-blind trial and TMS-EEG study. Cell Rep Med. 2023;4:101060.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature. 2014;505:318–26.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fogaça MV, Wu M, Li C, Li XY, Picciotto MR, Duman RS. Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Mol Psychiatry. 2021;26:3277–91.

    Article  PubMed  Google Scholar 

  23. Xie Y, Chen L, Wang L, Liu T, Zheng Y, Si L, et al. Single-nucleus transcriptomic analysis reveals the relationship between gene expression in oligodendrocyte lineage and major depressive disorder. J Transl Med. 2024;22:109.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, et al. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. Elife. 2023;12:e75631.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang F, Yang X, Ren Z, Chen C, Liu C. Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways. Mol Psychiatry. 2023;28:4707–18.

    Article  PubMed  Google Scholar 

  26. Liu H, Zhu T, Zhang L, Li F, Zheng M, Chen B, et al. Immunization with a low dose of zymosan A confers resistance to depression-like behavior and neuroinflammatory responses in chronically stressed mice. Behav Pharmacol. 2024;35:211–26.

    Article  PubMed  Google Scholar 

  27. Xu JJ, Kan WJ, Wang TY, Li L, Zhang Y, Ge ZY, et al. Ganoderic acid A ameliorates depressive-like behaviors in CSDS mice: Insights from proteomic profiling and molecular mechanisms. J Affect Disord. 2024;358:270–82.

    Article  PubMed  Google Scholar 

  28. Golden SA, Covington HE 3rd, Berton O, Russo SJ. Corrigendum: a standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2015;10:643.

    Article  PubMed  Google Scholar 

  29. Harris AZ, Atsak P, Bretton ZH, Holt ES, Alam R, Morton MP, et al. A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology. 2018;43:1276–83.

    Article  PubMed  Google Scholar 

  30. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc. 2016;11:499–524.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18:1376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360:176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, et al. Isoform cell-type specificity in the mouse primary motor cortex. Nature. 2021;598:195–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature. 2021;598:144–50.

    Article  PubMed  Google Scholar 

  35. Südhof TC. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171:745–69.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, et al. Transcriptomic evaluation of a stress vulnerability network using single-cell RNA sequencing in mouse prefrontal cortex. Biol Psychiatry. 2024;96:886–99.

    Article  PubMed  Google Scholar 

  37. Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science. 2024;384:eadh3707.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Als TD, Kurki MI, Grove J, Voloudakis G, Therrien K, Tasanko E, et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat Med. 2023;29:1832–44.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595:565–71.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24:810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci. 2021;24:954–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Direk N, Williams S, Smith JA, Ripke S, Air T, Amare AT, et al. An analysis of two genome-wide association meta-analyses identifies a new locus for broad depression phenotype. Biol Psychiatry. 2017;82:322–9.

    Article  PubMed  Google Scholar 

  43. Dattilo V, Ulivi S, Minelli A, La Bianca M, Giacopuzzi E, Bortolomasi M, et al. Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World J Biol Psychiatry. 2023;24:135–48.

    Article  PubMed  Google Scholar 

  44. Dienel SJ, Fish KN, Lewis DA. The nature of prefrontal cortical GABA neuron alterations in schizophrenia: markedly lower somatostatin and parvalbumin gene expression without missing neurons. Am J Psychiatry. 2023;180:495–507.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lan T, Li Y, Chen X, Wang W, Wang C, Lou H, et al. Exercise-Activated mPFC tri-synaptic pathway ameliorates depression-like behaviors in mouse. Adv Sci. 2025;12:e2408618.

    Article  Google Scholar 

  46. Horie I, Muroi Y, Ishii T. Noradrenergic regulation of the medial prefrontal cortex mediates stress coping in postpartum female mice. Mol Neurobiol. 2025;62:137–55.

    Article  PubMed  Google Scholar 

  47. Nagy C, Maitra M, Tanti A, Suderman M, Théroux JF, Davoli MA, et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci. 2020;23:771–81.

    Article  PubMed  Google Scholar 

  48. Liu Y, Guo D, Yu B, Zeng T, Jiao FL, Bi YM. The effects and mechanisms of modified Xiaoyaosan on chronic unpredictable mild stress (CUMS)-induced depressive mice based on network pharmacology. J Ethnopharmacol. 2024;324:117754.

    Article  PubMed  Google Scholar 

  49. Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S. The protective effect of 5-O-methylvisammioside on LPS-induced depression in mice by inhibiting the over activation of BV-2 microglia through Nf-κB/IκB-α pathway. Phytomedicine. 2020;79:153348.

    Article  PubMed  Google Scholar 

  50. Uchida T, Furukawa T, Iwata S, Yanagawa Y, Fukuda A. Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring. Transl Psychiatry. 2014;4:e371.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, et al. Transcriptomic evaluation of a stress vulnerability network using single cell RNA-seq in mouse prefrontal cortex. Biol Psychiatry. 2024;96:886–99.

    Article  PubMed  Google Scholar 

  52. Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu(5) receptor plasticity on somatostatin-expressing interneurons. Neuron. 2022;110:1068–83.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry. 2018;23:1614–25.

    Article  PubMed  Google Scholar 

  54. Xu H, Liu L, Tian Y, Wang J, Li J, Zheng J, et al. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron. 2019;102:668–82.e5.

    Article  PubMed  Google Scholar 

  55. Munguba H, Chattopadhyaya B, Nilsson S, Carriço JN, Memic F, Oberst P, et al. Postnatal Sox6 regulates synaptic function of cortical parvalbumin-expressing neurons. J Neurosci. 2021;41:8876–86.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bloch M, Azem F, Aharonov I, Ben Avi I, Yagil Y, Schreiber S, et al. GnRH-agonist induced depressive and anxiety symptoms during in vitro fertilization-embryo transfer cycles. Fertil Steril. 2011;95:307–9.

    Article  PubMed  Google Scholar 

  58. Sepulcri Rde P, do Amaral VF. Depressive symptoms, anxiety, and quality of life in women with pelvic endometriosis. Eur J Obstet Gynecol Reprod Biol. 2009;142:53–6.

    Article  PubMed  Google Scholar 

  59. Tabassum S, Misrani A, Huang HX, Zhang ZY, Li QW, Long C. Resveratrol attenuates chronic unpredictable mild stress-induced alterations in the SIRT1/PGC1α/SIRT3 pathway and associated mitochondrial dysfunction in mice. Mol Neurobiol. 2023;60:5102–16.

    Article  PubMed  Google Scholar 

  60. Kuczynska Z, Metin E, Liput M, Buzanska L. Covering the role of PGC-1α in the nervous system. Cells. 2021;11:111.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, et al. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun. 2023;14:2912.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci USA. 2019;116:19619–25.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roppongi RT, Karimi B, Siddiqui TJ. Role of LRRTMs in synapse development and plasticity. Neurosci Res. 2017;116:18–28.

    Article  PubMed  Google Scholar 

  64. Roppongi RT, Dhume SH, Padmanabhan N, Silwal P, Zahra N, Karimi B, et al. LRRTMs organize synapses through differential engagement of neurexin and PTPσ. Neuron. 2020;106:108–25.e12.

    Article  PubMed  Google Scholar 

  65. Yamagata A, Goto-Ito S, Sato Y, Shiroshima T, Maeda A, Watanabe M, et al. Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction. Nat Commun. 2018;9:3964.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shen J, Xie P, Wang J, Yang F, Li S, Jiang H, et al. Nlrp6 protects from corticosterone-induced NSPC ferroptosis by modulating RIG-1/MAVS-mediated mitophagy. Redox Biol. 2024;73:103196.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shi X, Zhou XZ, Chen G, Luo WF, Zhou C, He TJ, et al. Targeting the postsynaptic scaffolding protein PSD-95 enhances BDNF signaling to mitigate depression-like behaviors in mice. Sci Signal. 2024;17:eadn4556.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu Q, Zhao JN, Fang ZT, Wang X, Zhang BG, He Y, et al. BGP-15 alleviates LPS-induced depression-like behavior by promoting mitophagy. Brain Behav Immun. 2024;119:648–64.

    Article  PubMed  Google Scholar 

  69. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38:737–46.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (STI2030-Major Projects 2021ZD0202400, STI2030-Major Projects 2021ZD0200600), the Natural Science Foundation Project of China (82171523, 82471545, 82401784, 32400850, 82401523, 82201688), National Reserve Talent Project in the Health and Wellness Sector of Chongqing (HBRC202410, HBRC202417), China Postdoctoral Science Foundation (2024MD754023), Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202400404).

Author information

Authors and Affiliations

Authors

Contributions

PZ designed experiments. GJM, JW, JY and XYZ performed analysis and computation. GJM, YH and XMT performed all experiments. GJM, RMT and YYW constructed the animal model. GJM and JPZ created figures and drafted the manuscript. PZ, JW, JPZ, YH and XDS provided the fundings. YFL, PL and MHY performed data quality control. PZ, MLW and JL revised the manuscript for intellectual content. All authors reviewed and revised the final manuscript before submitting the manuscript.

Corresponding author

Correspondence to Peng Zheng.

Ethics declarations

Ethics approval

All animal studies and experimental procedures were approved by the Animal Care and Use Committee of Chongqing Medical University (IACUC-CQMU-2023-0145), all methods were carried out in accordance with the relevant guidelines and regulations.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Wu, J., Wu, Y. et al. Single-cell transcriptomics reveals Sox6 positive interneurons enriched in the prefrontal cortex of female mice vulnerable to chronic social stress. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03088-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03088-9

Search

Quick links