Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIX4 promotes hepatocellular carcinoma metastasis through upregulating YAP1 and c-MET

Abstract

Metastasis is the main reason for high mortality in hepatocellular carcinoma (HCC) patients and the molecular mechanism remains unclear. Therefore, it is important to elucidate the mechanism underlying HCC metastasis. Here, we report a novel role of SIX homeobox 4 (SIX4), one of the SIX gene family, in promoting HCC metastasis. The elevated expression of SIX4 was positively correlated with loss of tumor encapsulation, microvascular invasion, higher TNM stage, and poor prognosis in human HCC. SIX4 expression was an independent and significant risk factor for the recurrence and survival in HCC patients. Upregulation of SIX4 promoted HCC invasion and metastasis, whereas downregulation of SIX4 decreased HCC invasion and metastasis. SIX4 transactivated Yes1 associated transcriptional regulator (YAP1) and MET proto-oncogene, receptor tyrosine kinase (MET) expression through directly binding to their promoters. Knockdown of YAP1 and c-MET inhibited SIX4-medicated HCC metastasis, while the stable overexpression of YAP1 and c-MET reversed the decreased metastasis induced by SIX4 knockdown. Hepatocyte growth factor (HGF), the specific ligand of c-MET, upregulated SIX4 expression through ERK/NF-κB pathway. Knockdown of SIX4 significantly decreased HGF-enhanced HCC metastasis. In human HCC tissues, SIX4 expression was positively correlated with nuclear YAP1, c-MET and HGF expression. Patients with positive coexpression of SIX4/ nuclear YAP1, SIX4/c-MET or HGF/SIX4 had the poorest prognosis. Moreover, the combination treatment of YAP1 inhibitor Verteporfin and c-MET inhibitor Capmatinib significantly suppressed SIX4-mediated HCC metastasis. In conclusion, SIX4 is a prognostic biomarker in HCC patients and targeting the HGF-SIX4-c-MET positive feedback loop may provide a promising strategy for the treatment of SIX4-driven HCC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of SIX4 promotes HCC metastasis and indicates poor prognosis in HCC patients.
Fig. 2: YAP1 and MET are two direct transcriptional targets of SIX4.
Fig. 3: SIX4 promotes HCC invasion and metastasis through upregulating YAP1 and c-MET.
Fig. 4: HGF upregulates SIX4 expression through ERK/NF-kB signaling pathway.
Fig. 5: SIX4 is essential for HGF-induced HCC metastasis.
Fig. 6: SIX4 expression is positively correlated with nuclear YAP1 and c-MET expression in human HCC tissues.
Fig. 7: Combined treatment of YAP1 and c-MET inhibitor blocks SIX4-medicated HCC Metastasis.

Similar content being viewed by others

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  2. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A, et al. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Christensen KL, Patrick AN, McCoy EL, Ford HL. The six family of homeobox genes in development and cancer. Adv Cancer Res. 2008;101:93–126.

    Article  CAS  PubMed  Google Scholar 

  5. Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, et al. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech. 2020;13:dmm043489.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu Z, Li C, Xu J, Lan Y, Liu H, Li X, et al. Crucial and Overlapping Roles of Six1 and Six2 in Craniofacial Development. J Dent Res. 2019;98:572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell. 2018;33:368–85. e367.

    Article  CAS  PubMed  Google Scholar 

  8. Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA. 2004;101:6478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA, et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Investig. 2009;119:2663–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, et al. SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Investig. 2012;122:1895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 2012;31:4923–34.

    Article  CAS  PubMed  Google Scholar 

  12. Oliphant MUJ, Vincent MY, Galbraith MD, Pandey A, Zaberezhnyy V, Rudra P, et al. SIX2 Mediates Late-Stage Metastasis via Direct Regulation of SOX2 and Induction of a Cancer Stem Cell Program. Cancer Res. 2019;79:720–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu Z, Feng J, Wang W, Deng Z, Zhang Y, Xiao L, et al. The EGFR-ZNF263 signaling axis silences SIX3 in glioblastoma epigenetically. Oncogene. 2020;39:3163–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng Y, Zeng Y, Qiu R, Liu R, Huang W, Hou Y, et al. The Homeotic Protein SIX3 Suppresses Carcinogenesis and Metastasis through Recruiting the LSD1/NuRD(MTA3) Complex. Theranostics. 2018;8:972–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li G, Hu F, Luo X, Hu J, Feng Y. SIX4 promotes metastasis via activation of the PI3K-AKT pathway in colorectal cancer. PeerJ. 2017;5:e3394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tang X, Yang Y, Song X, Liu X, Wang X, Huang F, et al. SIX4 acts as a master regulator of oncogenes that promotes tumorigenesis in non-small-cell lung cancer cells. Biochem Biophys Res Commun. 2019;516:851–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sun X, Ma J, Chen Q, Hou Z, Luo X, Wang G, et al. SIX4 promotes metastasis through STAT3 activation in breast cancer. Am J Cancer Res. 2020;10:224–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103.

    Article  CAS  PubMed  Google Scholar 

  19. Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol. 2014;60:442–52.

    Article  CAS  PubMed  Google Scholar 

  20. Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G, et al. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology. 2018;67:1132–49.

    Article  PubMed  Google Scholar 

  21. Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, et al. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology. 2014;59:1874–85.

    Article  CAS  PubMed  Google Scholar 

  22. Hu CT, Wu JR, Cheng CC, Wu WS. The Therapeutic Targeting of HGF/c-Met Signaling in Hepatocellular Carcinoma: Alternative Approaches. Cancers (Basel). 2017;9:58.

    Article  CAS  Google Scholar 

  23. Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: Looking outside the box. J Hepatol. 2020;72:342–52.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol. 2019;61:64–71.

    Article  CAS  PubMed  Google Scholar 

  25. Patel SH, Camargo FD, Yimlamai D. Hippo Signaling in the Liver Regulates Organ Size, Cell Fate, and Carcinogenesis. Gastroenterology. 2017;152:533–45.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Wang Q, Yang G, Marando C, Koblish HK, Hall LM, et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res. 2011;17:7127–38.

    Article  CAS  PubMed  Google Scholar 

  27. Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, et al. Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep. 2016;15:1175–89.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Rao B, Lou J, Li J, Liu Z, Li A, et al. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol. 2020;8:55.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gibault F, Bailly F, Corvaisier M, Coevoet M, Huet G, Melnyk P, et al. Molecular Features of the YAP Inhibitor Verteporfin: Synthesis of Hexasubstituted Dipyrrins as Potential Inhibitors of YAP/TAZ, the Downstream Effectors of the Hippo Pathway. ChemMedChem. 2017;12:954–61.

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Li CW, Li X, Ding Q, Guo L, Liu S, et al. MET Inhibitors Promote Liver Tumor Evasion of the Immune Response by Stabilizing PDL1. Gastroenterology. 2019;156:1849–61. e1813.

    Article  CAS  PubMed  Google Scholar 

  31. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  32. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  CAS  PubMed  Google Scholar 

  33. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  34. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115:4576–85.

    Article  CAS  PubMed  Google Scholar 

  36. Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, et al. Cooperation between MYC and beta-catenin in liver tumorigenesis requires Yap/Taz. Hepatology. 2020. https://doi.org/10.1002/hep.31120.

  37. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng X, et al. Yes-associated protein (YAP) binds to HIF-1alpha and sustains HIF-1alpha protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J Exp Clin Cancer Res. 2018;37:216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, et al. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol. 2018;14:59–71.

    Article  CAS  PubMed  Google Scholar 

  40. Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer. 2018;18:341–58.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med. 2004;10:175–81.

    Article  CAS  PubMed  Google Scholar 

  43. Xiang C, Chen J, Fu P. HGF/Met Signaling in Cancer Invasion: the Impact on Cytoskeleton Remodeling. Cancers (Basel). 2017;9:44.

    Article  CAS  Google Scholar 

  44. Garcia-Vilas JA, Medina MA. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol. 2018;24:3695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Papaccio F, Della Corte CM, Viscardi G, Di Liello R, Esposito G, Sparano F, et al. HGF/MET and the immune system: relevance for cancer immunotherapy. Int J Mol Sci. 2018;19:3595.

    Article  PubMed Central  CAS  Google Scholar 

  46. Vejchapipat P, Tangkijvanich P, Theamboonlers A, Chongsrisawat V, Chittmittrapap S, Poovorawan Y. Association between serum hepatocyte growth factor and survival in untreated hepatocellular carcinoma. J Gastroenterol. 2004;39:1182–8.

    Article  CAS  PubMed  Google Scholar 

  47. Mizuguchi T, Nagayama M, Meguro M, Shibata T, Kaji S, Nobuoka T, et al. Prognostic impact of surgical complications and preoperative serum hepatocyte growth factor in hepatocellular carcinoma patients after initial hepatectomy. J Gastrointest Surg. 2009;13:325–33.

    Article  PubMed  Google Scholar 

  48. Bladt F, Friese-Hamim M, Ihling C, Wilm C, Blaukat A. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models. Cancers (Basel). 2014;6:1736–52.

    Article  CAS  Google Scholar 

  49. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Disco. 2013;3:658–73.

    Article  CAS  Google Scholar 

  50. Ou SI, Govindan R, Eaton KD, Otterson GA, Gutierrez ME, Mita AC, et al. Phase I Results from a Study of Crizotinib in Combination with Erlotinib in Patients with Advanced Nonsquamous Non-Small Cell Lung Cancer. J Thorac Oncol. 2017;12:145–51.

    Article  PubMed  Google Scholar 

  51. Dong Q, Du Y, Li H, Liu C, Wei Y, Chen MK, et al. EGFR and c-MET Cooperate to Enhance Resistance to PARP Inhibitors in Hepatocellular Carcinoma. Cancer Res. 2019;79:819–29.

    Article  CAS  PubMed  Google Scholar 

  52. Chen R, Zhu S, Fan XG, Wang H, Lotze MT, Zeh HJ 3rd, et al. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology. 2018;67:1823–41.

    Article  CAS  PubMed  Google Scholar 

  53. Gavini J, Dommann N, Jakob MO, Keogh A, Bouchez LC, Karkampouna S, et al. Verteporfin-induced lysosomal compartment dysregulation potentiates the effect of sorafenib in hepatocellular carcinoma. Cell Death Dis. 2019;10:749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen J, Du F, Dang Y, Li X, Qian M, Feng W. et al. Fibroblast Growth Factor 19-Mediated Up-regulation of SYR-Related High-Mobility Group Box 18 Promotes Hepatocellular Carcinoma Metastasis by Transactivating Fibroblast Growth Factor Receptor 4 and Fms-Related Tyrosine Kinase 4. Hepatology. 2020;71:1712–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research was supported by grants from the National Key Research and Development Program of China 2018YFC1312103 (LX), National Natural Science Foundation of China No. 81871911 (WH), No. 81972237 (LX), and No. 81772623 (LX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Liu or Limin Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Lin, Z., Wang, Z. et al. SIX4 promotes hepatocellular carcinoma metastasis through upregulating YAP1 and c-MET. Oncogene 39, 7279–7295 (2020). https://doi.org/10.1038/s41388-020-01500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01500-y

This article is cited by

Search

Quick links