Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM32 promotes radioresistance by disrupting TC45-STAT3 interaction in triple-negative breast cancer

Abstract

Radioresistance is common in the treatment of triple-negative breast cancer (TNBC), but the molecular mechanisms involved remain unclear. Herein, we reveal that tripartite motif-containing protein 32 (TRIM32) is upregulated in TNBC and is negatively associated with survival of TNBC patients. Radiotherapy resulted in enhanced expression of TRIM32, whereas TRIM32 depletion reduced TNBC radioresistance in vitro and in vivo. Mechanistically, radiotherapy promoted the association between TRIM32 and nuclear STAT3, which suppressed TC45-induced dephosphorylation of STAT3, resulting in increased STAT3 transcriptional activation and TNBC radioresistance. Finally, we demonstrated that TRIM32 and STAT3 phosphorylation are co-expressed in TNBC tissues. Moreover, high expression of TRIM32 and STAT3 phosphorylation is positively linked to poor prognosis of TNBC patients. Our study demonstrates that TRIM32 is a novel target for predicting radioresistance in TNBC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM32 is upregulated in TNBC and is negatively associated with prognosis of TNBC patients.
Fig. 2: TRIM32 is transcriptionally upregulated by radiotherapy.
Fig. 3: TRIM32 enhances radioresistance in TNBC cells.
Fig. 4: TRIM32 promotes TNBC radioresistance by enhancing STAT3 phosphorylation.
Fig. 5: Radiotherapy promotes TRIM32 interaction with STAT3 in the nucleus.
Fig. 6: Y528/Q531 sites of TRIM32 are important for TNBC radioresistance.
Fig. 7: TRIM32 induces STAT3 phosphorylation by disrupting STAT3-TC45 interaction.
Fig. 8: Co-expression of TRIM32 and p-STAT3Y705 in clinical TNBC samples.

Similar content being viewed by others

References

  1. Okawa T. [History of radiotherapy for cancer]. Gan Kagaku Ryoho. 1999;26:15–22.

    Google Scholar 

  2. He MY, Rancoule C, Rehailia-Blanchard A, Espenel S, Trone JC, Bernichon E, et al. Crit Rev Oncol Hematol. 2018;131:96–101.

    Article  Google Scholar 

  3. He L, Lv Y, Song Y, Zhang B. The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res. 2019;11:5765–75.

    Article  CAS  Google Scholar 

  4. Qiu L, Ma Y, Chen X, Zhou L, Zhang H, Zhong G, et al. Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med. 2021;19:344.

    Article  CAS  Google Scholar 

  5. Wang X, Zhang X, Qiu C, Yang N. STAT3 contributes to radioresistance in cancer. Front Oncol. 2020;10:1120.

    Article  Google Scholar 

  6. Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer cell. 2013;23:839–52.

    Article  CAS  Google Scholar 

  7. Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D, et al. TRIM59 promotes gliomagenesis by inhibiting TC45 dephosphorylation of STAT3. Cancer Res. 2018;78:1792–804.

    Article  CAS  Google Scholar 

  8. He K, Qi Q, Chan CB, Xiao G, Liu X, Tucker-Burden C, et al. Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci Signal. 2013;6:ra55.

    Article  Google Scholar 

  9. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.

    Article  CAS  Google Scholar 

  10. Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, et al. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002;297:811–7.

    Article  CAS  Google Scholar 

  11. Wang Y, Ning H, Ren F, Zhang Y, Rong Y, Wang Y, et al. GdX/UBL4A specifically stabilizes the TC45/STAT3 association and promotes dephosphorylation of STAT3 to repress tumorigenesis. Mol Cell. 2014;53:752–65.

    Article  CAS  Google Scholar 

  12. Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol. 2002;12:446–53. Mar 19

    Article  CAS  Google Scholar 

  13. Lu L, Dong J, Wang L, Xia Q, Zhang D, Kim H, et al. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene 2018;37:5292–304.

    Article  CAS  Google Scholar 

  14. Hatakeyama S. TRIM family proteins: roles in autophagy. Immun, carcinogenesis Trends Biochemical Sci. 2017;42:297–311.

    Article  CAS  Google Scholar 

  15. Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH, et al. TRIM59 Is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 2014;147:1043–54.

    Article  CAS  Google Scholar 

  16. Lazzari E, Meroni G. TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: from muscular dystrophy to tumours. Int J Biochem Cell Biol. 2016;79:469–77.

    Article  CAS  Google Scholar 

  17. Kudryashova E, Wu J, Havton LA, Spencer MJ. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet. 2009;18:1353–67.

    Article  CAS  Google Scholar 

  18. Wang J, Fang Y, Liu T. TRIM32 promotes the growth of gastric cancer cells through enhancing AKT activity and glucose transportation. Biomed Res Int. 2020;2020:4027627.

    PubMed  PubMed Central  Google Scholar 

  19. Cui X, Lin Z, Chen Y, Mao X, Ni W, Liu J, et al. Upregulated TRIM32 correlates with enhanced cell proliferation and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 2016;421:127–37.

    Article  CAS  Google Scholar 

  20. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572–80.

    Article  CAS  Google Scholar 

  21. Yin H, Li Z, Chen J, Hu X. Expression and the potential functions of TRIM32 in lung cancer tumorigenesis. J Cell Biochem. 2019;120:5232–43.

    Article  CAS  Google Scholar 

  22. Wang M, Luo W, Zhang Y, Yang R, Li X, Guo Y, et al. Trim32 suppresses cerebellar development and tumorigenesis by degrading Gli1/sonic hedgehog signaling. Cell Death Differ. 2020;27:1286–99.

    Article  CAS  Google Scholar 

  23. He MY, Rancoule C, Rehailia-Blanchard A, Espenel S, Trone JC, Bernichon E, et al. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Crit Rev Oncol Hematol. 2018;131:96–101.

    Article  Google Scholar 

  24. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019;393:40–50.

    Article  CAS  Google Scholar 

  25. Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ. 2020;27:695–710.

    Article  CAS  Google Scholar 

  26. Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, et al. Nanoparticles (NPs)-meditated LncRNA AFAP1-AS1 silencing to block wnt/beta-catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy. Adv Sci (Weinh). 2020;7:2000915.

    Article  CAS  Google Scholar 

  27. Ikeda O, Miyasaka Y, Sekine Y, Mizushima A, Muromoto R, Nanbo A, et al. STAP-2 is phosphorylated at tyrosine-250 by Brk and modulates Brk-mediated STAT3 activation. Biochem Biophys Res Commun. 2009;384:71–5.

    Article  CAS  Google Scholar 

  28. Abe K, Hirai M, Mizuno K, Higashi N, Sekimoto T, Miki T, et al. The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene 2001;20:3464–74.

    Article  CAS  Google Scholar 

  29. Minoguchi M, Minoguchi S, Aki D, Joo A, Yamamoto T, Yumioka T, et al. STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif. J Biol Chem. 2003;278:11182–9.

    Article  CAS  Google Scholar 

  30. El-Husseini AE, Vincent SR. Cloning and characterization of a novel RING finger protein that interacts with class V myosins. J Biol Chem. 1999;274:19771–7.

    Article  CAS  Google Scholar 

  31. Horn EJ, Albor A, Liu Y, El-Hizawi S, Vanderbeek GE, Babcock M, et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 2004;25:157–67.

    Article  CAS  Google Scholar 

  32. Liu J, Zhang C, Wang XL, Ly P, Belyi V, Xu-Monette ZY, et al. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis. Cell Death Differ. 2014;21:1792–804.

    Article  CAS  Google Scholar 

  33. Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, et al. TRIM32 promotes proliferation and confers chemoresistance to breast cancer cells through activation of the NF-κB pathway. J Cancer. 2018;9:1349–56.

    Article  Google Scholar 

  34. Brett-Morris A, Wright BM, Seo Y, Pasupuleti V, Zhang J, Lu J, et al. The polyamine catabolic enzyme SAT1 modulates tumorigenesis and radiation response in GBM. Cancer Res. 2014;74:6925–34.

    Article  CAS  Google Scholar 

  35. Fan QW, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer cell. 2013;24:438–49.

    Article  CAS  Google Scholar 

  36. Qiu L, Ma Y, Chen X, Chen X, Zhou L, Zhang H, Zhong G, et al. Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med. 2021;19:344.

    Article  CAS  Google Scholar 

  37. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997;278:1803–5.

    Article  CAS  Google Scholar 

  38. Park SY, Lee CJ, Choi JH, Kim JH, Kim JW, Kim JY, et al. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res. 2019;38:399.

    Article  Google Scholar 

Download references

Funding

This study was supported, in part, by grants from the National Natural Science Foundation of China (Grant number: 82003236 to Haibo Zhang), Zhejiang Provincial Nature Science Foundation of China (Grant number: LQ20H160063 to Jianming Tang), Gansu Provincial National Science Foundation for Distinguished Young Scholars (Grant number: 21JR7RA389 to Jianming Tang), Zhejiang Provincial Nature Science Foundation of China (Grant number: LY20H160044 to Ying Wang).

Author information

Authors and Affiliations

Authors

Contributions

LZ, JT, YM, and HZ conceived and designed experiments. YM, HZ, CC, LL, TD, YW, DM, XL, XC, JL, GZ, and GR performed the experiments. JT developed the imaging analysis. JT and HZ wrote the paper.

Corresponding authors

Correspondence to Lei Zhang or Jianming Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhang, H., Chen, C. et al. TRIM32 promotes radioresistance by disrupting TC45-STAT3 interaction in triple-negative breast cancer. Oncogene 41, 1589–1599 (2022). https://doi.org/10.1038/s41388-022-02204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02204-1

This article is cited by

Search

Quick links