Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer

Abstract

Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH ___domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of circPAK2 in gastric cancer cells and tissues.
Fig. 2: CircPAK2 enhances the migration, invasion, EMT, lymphangiogenesis, angiogenesis and metastasis of gastric cancer in vitro and in vivo.
Fig. 3: CircPAK2 is exported by YTHDC1 from nucleus to cytoplasm in an m6A-dependent manner.
Fig. 4: CircPAK2 interacts with IGF2BP1/2/3 in an m6A-dependent manner.
Fig. 5: CircPAK2/IGF2BPs/VEGFA complex stabilizes VEGFA mRNA.
Fig. 6: CircPAK2 promotes LN metastasis of gastric cancer through targeting VEGFA.
Fig. 7: Clinical validation process of circPAK2 as a biomarker for LN metastasis and prognosis prediction of gastric cancer.
Fig. 8

Similar content being viewed by others

Data availability

The processed data in this study have been deposited in GEO under accession number GSE248612.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li GZ, Doherty GM, Wang J. Surgical management of gastric cancer: a review. JAMA Surg. 2022;157:446–54.

    Article  PubMed  Google Scholar 

  4. Chen D, Chen G, Jiang W, Fu M, Liu W, Sui J, et al. Association of the collagen signature in the tumor microenvironment with LN metastasis in early gastric cancer. JAMA Surg. 2019;154:e185249.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14:159–72.

    Article  CAS  PubMed  Google Scholar 

  6. Sundar SS, Ganesan TS. Role of lymphangiogenesis in cancer. J Clin Oncol. 2007;25:4298–307.

    Article  CAS  PubMed  Google Scholar 

  7. Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, et al. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res. 2023;28:405.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  CAS  PubMed  Google Scholar 

  9. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.

    Article  CAS  PubMed  Google Scholar 

  10. Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    Article  CAS  PubMed  Google Scholar 

  11. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Shan G. CircRNA in cancer: fundamental mechanism and clinical potential. Cancer Lett. 2021;505:49–57.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 2023;16:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Front Oncol. 2023;13:1203696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang F, Ma Q, Huang B, Wang X, Pan X, Yu T, et al. CircNFATC3 promotes the proliferation of gastric cancer through binding to IGF2BP3 and restricting its ubiquitination to enhance CCND1 mRNA stability. J Transl Med. 2023;21:402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen Y, Zhang N, Chai J, Wang T, Ma C, Han L, et al. CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 2023;83:538–52.

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Niu L, Hao J, Yao Y, Yan M, Li H. circIPO7 dissociates caprin-1 from ribosomes and inhibits gastric cancer cell proliferation by suppressing EGFR and mTOR. Oncogene. 2023;42:980–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Li J, Bian X, Wu C, Hua J, Chang S, et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci USA. 2021;118:e2012881118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article  CAS  PubMed  Google Scholar 

  20. Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed? Nat Rev Genet. 2016;17:365–72.

    Article  CAS  PubMed  Google Scholar 

  21. Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell. 2023;83:428–41.

    Article  CAS  PubMed  Google Scholar 

  22. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20:1666–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023;51:D1188–95.

    Article  CAS  PubMed  Google Scholar 

  24. Zhong S, Feng J. CircPrimer 2.0: a software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinforma. 2022;23:215.

    Article  CAS  Google Scholar 

  25. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42.

    Article  PubMed  Google Scholar 

  26. Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6:e31311.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44:e91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol. 2023;16:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, et al. METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022;24:1278–90.

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology ___domain family of proteins. J Biol Chem. 2015;290:24902–13.

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Massagué J, Ganesh K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021;11:971–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell. 2023;186:1564–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zepeda-Enríquez P, Silva-Cázares MB, López-Camarillo C. Novel insights into circular RNAs in metastasis in breast cancer: an update. Noncoding RNA. 2023;9:55.

    PubMed  PubMed Central  Google Scholar 

  37. Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung cancer: Insight into their roles in metastasis. Biomed Pharmacother. 2023;166:115260.

    Article  CAS  PubMed  Google Scholar 

  38. Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42:2783–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong J, Zheng Z, Zhou M, Wang Y, Chen J, Cen J, et al. EGCG-LYS fibrils-mediated CircMAP2K2 silencing decreases the proliferation and metastasis ability of gastric cancer cells in vitro and in vivo. Adv Sci. 2023;10:e2304075.

    Article  Google Scholar 

  40. Shen X, Kong S, Ma S, Shen L, Zheng M, Qin S, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and LN metastasis. Oncogene. 2022;41:4724–35.

    Article  CAS  PubMed  Google Scholar 

  41. Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, et al. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer. 2022;21:141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu T, Ran L, Zhao H, Yin P, Li W, Lin J, et al. Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. Mol Ther Nucleic Acids. 2021;26:649–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, et al. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020;471:38–48.

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019;26:1346–64.

    Article  CAS  PubMed  Google Scholar 

  45. Giubelan A, Stancu MI, Honţaru SO, Mălăescu GD, Badea-Voiculescu O, Firoiu C, et al. Tumor angiogenesis in gastric cancer. Rom J Morphol Embryol. 2023;64:311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  47. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.

    Article  PubMed  Google Scholar 

  49. Yan H, Zhang L, Cui X, Zheng S, Li R. Roles and mechanisms of the m6A reader YTHDC1 in biological processes and diseases. Cell Death Discov. 2022;8:237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou H, Sun Q, Feng M, Gao Z, Jia S, Cao L, et al. Regulatory mechanisms and therapeutic implications of insulin-like growth factor 2 mRNA-binding proteins, the emerging crucial m6A regulators of tumors. Theranostics. 2023;13:4247–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 2023 Jun;29:454–67.

    Article  CAS  PubMed  Google Scholar 

  52. Fan HN, Chen ZY, Chen XY, Chen M, Yi YC, Zhu JS, et al. METTL14-mediatedm6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, et al. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett. 2022;535:215646.

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Fang Y, Gu Y, Shen H, Xu Y, Xu T, et al. Fat mass and obesity-associated protein (FTO) mediated m6A modification of circFAM192A promoted gastric cancer proliferation by suppressing SLC7A5 decay. Mol Biomed. 2024;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31:107641.

    Article  PubMed  Google Scholar 

  57. Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: an overview. Structure. 2021;29:787–803.

    Article  CAS  PubMed  Google Scholar 

  58. Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70:2657–75.

    Article  CAS  PubMed  Google Scholar 

  59. Huang X, Zhang H, Guo X, Zhu Z, Cai H, Kong X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol. 2018;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 2021;21:99.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lederer M, Bley N, Schleifer C, Hüttelmaier S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol. 2014;29:3–12.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Zhang Y, Li X, Gao H, Chen X, Li P. CircRNA-miRNA-VEGFA: an important pathway to regulate cancer pathogenesis. Front Pharmacol. 2023;14:1049742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Du Y, Zhang JY, Gong LP, Feng ZY, Wang D, Pan YH, et al. Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway. Cancer Lett. 2022;526:259–72.

    Article  CAS  PubMed  Google Scholar 

  64. Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem. 2014;156:1–10.

    Article  CAS  PubMed  Google Scholar 

  66. Dou R, Han L, Yang C, Fang Y, Zheng J, Liang C, et al. Upregulation of LINC00501 by H3K27 acetylation facilitates gastric cancer metastasis through activating epithelial-mesenchymal transition and angiogenesis. Clin Transl Med. 2023;13:e1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26:1277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.

    Article  CAS  PubMed  Google Scholar 

  72. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Hebei Provincial Major Science and Technology Special Project (23297701Z), Beijing–Tianjin–Hebei Basic Research Cooperation Special Project (22JCZXJC00140), and Hebei Provincial Government-funded Clinical Talent Project (ZF2023047).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: DPA, MLJ, ZQ; Specimen collection: DPA, WHT, WJX, LTK, HJC, GRJ, ZLL, GHH, TY, YPG, MN, LXL, GZJ; Acquisition of clinical data: DPA, LTK, HJC, GRJ, ZLL, GHH, TY, YPG, MN, LXL, GZJ; Cell biology experiments: WHT and WJX; Animal experiments: DPA, WHT, JYC; Interpretation of pathological sections: LF, DHY, LYP; Data organization and statistical analysis: DPA and MLJ; Drafting of the manuscript: DPA and MLJ; Correction and review of the manuscript: ZQ and MLJ.

Corresponding authors

Correspondence to Lingjiao Meng or Qun Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This multicenter study was conducted in accordance with the Declaration of Helsinki, and the study protocol was approved by the Institutional Review Board of the Fourth Hospital of Hebei Medical University and all other participating hospitals (Ethics Approval Number: 2023KY139). All authors followed the applicable ethical standards to maintain research integrity without any duplication, fraud, or plagiarism issues. Informed consent was obtained from all subjects for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Wu, H., Wu, J. et al. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 43, 2548–2563 (2024). https://doi.org/10.1038/s41388-024-03099-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03099-w

This article is cited by

Search

Quick links