Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation

Abstract

The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors. Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment.

In response to BKM120, the upstream region of MYC (UR) enhances MYC expression, via FOXO3a, leading to increased autophagic flux and resistance to PI3K inhibitors (left). Pharmacological blockade of autophagy (center) or lack of translocated MYC UR along with MYC CDS in BL (right) overcome resistance and induces cells death. Image created in BioRender.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The MYC UR does not mediate IRES-dependent translation in colon cancer cells.
Fig. 2: MYC UR does not regulate MYC content or cell proliferation in response to various cell stress.
Fig. 3: MYC UR provides resistance to PI3K inhibition.
Fig. 4: PI3K inhibition enhances MYC transcription via MYC UR.
Fig. 5: Resistance of CRC cells to PI3K inhibitors is linked to MYC-mediated increase of autophagy.
Fig. 6: Autophagy blockade overcomes CRC resistance to PI3K inhibitors.
Fig. 7: Autophagic chemoresistance mediated by the MYC UR is abrogated in translocation-specific Burkitt Lymphoma cells.

Similar content being viewed by others

Data availability

All data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

    Article  PubMed  CAS  Google Scholar 

  2. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science. 1983;222:390–3.

    Article  PubMed  CAS  Google Scholar 

  3. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79:7824–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA. 1982;79:7837–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rabbitts TH, Hamlyn PH, Baer R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature. 1983;306:760–5.

    Article  PubMed  CAS  Google Scholar 

  6. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2:764–76.

    Article  PubMed  CAS  Google Scholar 

  7. Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, et al. c-MYC copy-number gain is an independent prognostic factor in patients with colorectal cancer. PLoS One. 2015;10:e0139727.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kakisako K, Miyahara M, Uchino S, Adachi Y, Kitano S. Prognostic significance of c-myc mRNA expression assessed by semi-quantitative RT-PCR in patients with colorectal cancer. Oncol Rep. 1998;5:441–5.

    PubMed  CAS  Google Scholar 

  9. Bhatavdekar JM, Patel DD, Ghosh N, Chikhlikar PR, Trivedi TI, Suthar TP, et al. Coexpression of Bcl-2, c-Myc, and p53 oncoproteins as prognostic discriminants in patients with colorectal carcinoma. Dis Colon Rectum. 1997;40:785–90.

    Article  PubMed  CAS  Google Scholar 

  10. Rowley S, Newbold KM, Gearty J, Keighley MR, Donovan IA, Neoptolemos JP. Comparison of deoxyribonucleic acid ploidy and nuclear expressed p62 c-myc oncogene in the prognosis of colorectal cancer. World J Surg. 1990;14:545–50. discussion 551

    Article  PubMed  CAS  Google Scholar 

  11. Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target Myc for cancer treatment. Sig Transduct Target Ther. 2021;6:1–14.

    Google Scholar 

  12. Struntz NB, Chen A, Deutzmann A, Wilson RM, Stefan E, Evans HL, et al. Stabilization of the max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem Biol. 2019;26:711–23.e14.

    Article  PubMed  CAS  Google Scholar 

  13. Llombart V, Mansour MR. Therapeutic targeting of “undruggable” MYC. EBioMedicine 2021;75:103756.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Whitfield JR, Beaulieu ME, Soucek L. Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol [Internet]. 2017;5. [cited 2024 Feb 17]. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2017.00010

  15. De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23:3189–99.

    Article  PubMed  Google Scholar 

  16. Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J. Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway*. J Biol Chem. 2005;280:10964–73.

    Article  PubMed  CAS  Google Scholar 

  17. Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem. 1997;272:32061–6.

    Article  PubMed  CAS  Google Scholar 

  18. Stoneley M, Paulin FE, Quesne JPL, Chappell SA, Willis AE. C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene. 1998;16:423–8.

    Article  PubMed  CAS  Google Scholar 

  19. Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol. 2013;5:a012351.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–5.

    Article  PubMed  CAS  Google Scholar 

  21. Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988;62:2636–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Komar AA, Hatzoglou M. Cellular IRES-mediated translation. Cell Cycle. 2011;10:229–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Subkhankulova T, Mitchell SA, Willis AE. Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J. 2001;359:183–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol. 2000;20:1162–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yeh DW, Zhao X, Siddique HR, Zheng M, Choi HY, Machida T, et al. MSI2 promotes translation of multiple IRES-containing oncogenes and virus to induce self-renewal of tumor initiating stem-like cells. Cell Death Discov. 2023;9:1–15.

    Article  Google Scholar 

  26. Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF. A dual-luciferase reporter system for studying recoding signals. RNA. 1998;4:479–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Kozak M. New Ways of Initiating Translation in Eukaryotes? Mol Cell Biol. 2001;21:1899–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hellen CUT, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15:1593–612.

    Article  PubMed  CAS  Google Scholar 

  29. Bert AG, Grépin R, Vadas MA, Goodall GJ. Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA. 2006;12:1074–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Logg CR. Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci USA. 2008;105:4733–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang Z, Weaver M, Magnuson NS. Cryptic promoter activity in the DNA sequence corresponding to the pim-1 5’-UTR. Nucleic Acids Res. 2005;33:2248–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA. 2004;10:720–30.

    Article  PubMed  Google Scholar 

  33. Shi Y, Yang Y, Hoang B, Bardeleben C, Holmes B, Gera J, et al. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene. 2016;35:1015–24.

    Article  PubMed  CAS  Google Scholar 

  34. Denk S, Schmidt S, Schurr Y, Schwarz G, Schote F, Diefenbacher M, et al. CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer. Int J Colorectal Dis. 2021;36:911–8.

    Article  PubMed  CAS  Google Scholar 

  35. Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, et al. UNR/CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition. J Clin Med. 2019;8:560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Spriggs KA, Cobbold LC, Jopling CL, Cooper RE, Wilson LA, Stoneley M, et al. Canonical initiation factor requirements of the myc family of internal ribosome entry segments. Mol Cell Biol. 2009;29:1565–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Hüttenrauch M, Küspert M, et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov. 2015;5:768–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485:109–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pyronnet S, Pradayrol L, Sonenberg N. A cell cycle-dependent internal ribosome entry site. Mol Cell. 2000;5:607–16.

    Article  PubMed  CAS  Google Scholar 

  40. Shi Y, Sun F, Cheng Y, Holmes B, Dhakal B, Gera JF, et al. Critical role for cap-independent c-MYC translation in progression of multiple myeloma. Mol Cancer Therapeutics. 2022;21:502–10.

    Article  CAS  Google Scholar 

  41. Karar J, Cerniglia GJ, Lindsten T, Koumenis C, Maity A. Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia. Cancer Biol Ther. 2012;13:1102–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Burger MT, Pecchi S, Wagman A, Ni ZJ, Knapp M, Hendrickson T, et al. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med Chem Lett. 2011;2:774–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ilic N, Utermark T, Widlund HR, Roberts TM. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA. 2011;108:E699–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wright CJM, McCormack PL. Trametinib: first global approval. Drugs. 2013;73:1245–54.

    Article  PubMed  Google Scholar 

  45. Liu J, Long S, Wang H, Liu N, Zhang C, Zhang L, et al. Blocking AMPK/ULK1-dependent autophagy promoted apoptosis and suppressed colon cancer growth. Cancer Cell Int. 2019;19:336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang W, Hosford SR, Traphagen NA, Shee K, Demidenko E, Liu S, et al. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor–positive breast cancer. FASEB J. 2018;32:1222–35.

    Article  PubMed  CAS  Google Scholar 

  48. Ren H, Guo H, Thakur A, Zhang S, Wang T, Liang Y, et al. Blockade efficacy of MEK/ERK-dependent autophagy enhances PI3K/Akt inhibitor NVP-BKM120’s therapeutic effectiveness in lung cancer cells. Oncotarget. 2016;7:67277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy *. J Biol Chem. 2007;282:24131–45.

    Article  PubMed  CAS  Google Scholar 

  50. Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 2009;452:181–97.

    Article  PubMed  Google Scholar 

  51. Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, et al. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat Commun. 2019;10:3623.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mangiapane LR, Nicotra A, Turdo A, Gaggianesi M, Bianca P, Di Franco S, et al. PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut. 2022;71:119–28.

    Article  PubMed  CAS  Google Scholar 

  53. López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, et al. Burkitt lymphoma. Nat Rev Dis Prim. 2022;8:1–26.

    Google Scholar 

  54. Shiramizu B, Magrath I. Localization of breakpoints by polymerase chain reactions in Burkitt’s lymphoma with 8;14 translocations. Blood. 1990;75:1848–52.

    Article  PubMed  CAS  Google Scholar 

  55. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155:1479–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Papadatos-Pastos D, Rabbie R, Ross P, Sarker D. The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol. 2015;94:18–30.

    Article  PubMed  Google Scholar 

  57. Zhu M, Jin Q, Xin Y. Recent clinical advances in PI3K inhibitors on colorectal cancer. Pharmazie 2021;76:568–73.

    PubMed  CAS  Google Scholar 

  58. Mele L, Del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, et al. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev. 2020;88:102043.

    Article  PubMed  CAS  Google Scholar 

  59. Chang H, Zou Z. Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol. 2020;13:159.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Toh PPC, Luo S, Menzies FM, Raskó T, Wanker EE, Rubinsztein DC. Myc inhibition impairs autophagosome formation. Hum Mol Genet. 2013;22:5237–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: International Agency for Research on Cancer; 2017. 585 p. (World Health Organization classification of tumours).

  62. Kim H, Park ES, Lee SH, Koo HH, Kim HS, Lyu CJ, et al. Clinical outcome of relapsed or refractory burkitt lymphoma and mature B-cell lymphoblastic leukemia in children and adolescents. Cancer Res Treat. 2014;46:358–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Patte C, Auperin A, Michon J, Behrendt H, Leverger G, Frappaz D, et al. The Société Française d’Oncologie Pédiatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97:3370–9.

    Article  PubMed  CAS  Google Scholar 

  64. Möker P, zur Stadt U, Zimmermann M, Alawi M, Mueller S, Finger J, et al. Characterization of IG-MYC-breakpoints and their application for quantitative minimal disease monitoring in high-risk pediatric Burkitt-lymphoma and. Leukemia. 2022;36:2343–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Busch K, Keller T, Fuchs U, Yeh RF, Harbott J, Klose I, et al. Identification of two distinct MYC breakpoint clusters and their association with various IGH breakpoint regions in the t(8;14) translocations in sporadic Burkitt-lymphoma. Leukemia. 2007;21:1739–51.

    Article  PubMed  CAS  Google Scholar 

  66. Coni S, Serrao SM, Yurtsever ZN, Di Magno L, Bordone R, Bertani C, et al. Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death Dis. 2020;11:1–14.

    Article  Google Scholar 

  67. Coni S, Falconio FA, Marzullo M, Munafò M, Zuliani B, Mosti F, et al. Translational control of polyamine metabolism by CNBP is required for Drosophila locomotor function. Ramaswami M, VijayRaghavan K, Ramaswami M, editors. eLife. 2021;10:e69269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Coni S, Bordone R, Ivy DM, Yurtsever ZN, Di Magno L, D’Amico R, et al. Combined inhibition of polyamine metabolism and eIF5A hypusination suppresses colorectal cancer growth through a converging effect on MYC translation. Cancer Lett. 2023;559:216120.

    Article  PubMed  CAS  Google Scholar 

  69. D’Amico D, Antonucci L, Di Magno L, Coni S, Sdruscia G, Macone A, et al. Non-canonical Hedgehog/AMPK-mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth. Dev Cell. 2015;35:21–35.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, et al. Phenformin Inhibits Hedgehog-dependent tumor growth through a complex I-independent redox/corepressor module. Cell Rep. 2020;30:1735–1752.e7.

  71. Xue X, Shah YM. In vitro organoid culture of primary mouse colon tumors. JoVE (J Visualized Exp). 2013;75:e50210.

    Google Scholar 

Download references

Acknowledgements

We thank Drs Pankaj Trivedi and Eleni Anastasiadou for sharing Raji and DG75 cells and advice, and Drs Cristiano Simone and Martina Lepore Signorile for providing FOXO3a expression vector and antibody. This work was funded by the Fondazione AIRC (Associazione Italiana per la Ricerca sul Cancro) IG 25833 to GC, IG20801 to LuDM, IG24329 to GG, AIRC Italy Post-Doc fellowship (to RB), MIUR PRIN 2022 2022L332YR (GC), MIUR PRIN 2022 under 40 2022J8X7PJ (SC) Sapienza University of Rome RG12117A61923A6F (GC), Institute Pasteur Italy—Fondazione Cenci Bolognetti, call 2020 “Anna Tramontano” (GC), Fondazione Umberto Veronesi fellowship (to LDM), Dipartimenti di Eccellenza 2018-2022 and 2023-2027 (L. 232/2016).

Author information

Authors and Affiliations

Authors

Contributions

GC conceived and coordinated the project, designed experiments, analyzed data and wrote the paper, RB and DMI designed and performed experiments, analyzed data, and wrote the paper, RDA, MB, FDP, BC, FB, AB, MG performed experiments and analyzed data, EDS, GG, LuDM, AF, LDM, SC, GS analyzed data and reviewed the manuscript.

Corresponding author

Correspondence to Gianluca Canettieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods involving human derived materials and animal subjects were performed in accordance with the relevant local regulation and guidelines. All mouse experiments were performed according to the European Community Council Directive 2010/63/EU and carried out under the approval of the Institutional Animal Care Committee and Ministry of Health (protocol n. C1368.26). Patient-derived colorectal cancer stem cells were obtained in accordance with the ethical standards regarding Human Experimentation and informed consent was obtained from each patient in this study under Institutional Review Board protocols (authorization CE9/2015, Policlinico Paolo Giaccone, Palermo, Italy).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordone, R., Ivy, D.M., D’Amico, R. et al. MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation. Oncogene 43, 3349–3365 (2024). https://doi.org/10.1038/s41388-024-03170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03170-6

Search

Quick links