Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m6A methylation drives breast cancer progression and metastasis

Abstract

Dysregulated N6-methyladenosine (m6A) modification has been associated with breast cancer pathogenesis. Hypoxia which characterizes solid tumors is known to reprogram the m6A epitranscriptome, but the underlying mechanisms of how this process contributes to breast cancer progression remain poorly understood. Through integrative analyses of m6A-RIP sequencing and RNA sequencing databases, we reveal a cluster of mRNAs with upregulated m6A methylation and expression under hypoxia, that are enriched by many oncogenic pathways, including PI3K–Akt signaling. Furthermore, we identify the mRNA, RIPOR3, as a target of METTL3-mediated m6A methylation in response to hypoxia. We find that m6A methylation stabilizes RIPOR3, increasing its protein expression in a METTL3 catalytic activity-dependent manner, and consequently driving breast tumor growth and metastasis. RIPOR3 is found to be overexpressed in breast cancer cell lines and tumor tissues from breast cancer patients, in whom elevated RIPOR3 is associated with a worse prognosis. Mechanistically, we show that RIPOR3 interacts with EGFR and is essential for the PI3K–Akt pathway activation. In conclusion, we identify RIPOR3 as a hypoxia-stabilized oncogenic driver via METTL3-mediated m6A methylation, thus provide a potential therapeutic target for breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative analyses of m6A-RIP sequencing and RNA sequencing data reveal a set of hypoxia-increased mRNA with elevated m6A methylation that are enriched by oncogenic pathways.
Fig. 2: Identification of RIPOR3 as a hypoxia-stabilized mRNA via METTL3-mediated m6A methylation.
Fig. 3: RIPOR3 is involved in breast cancer pathogenesis.
Fig. 4: RIPOR3 accelerates breast tumor growth.
Fig. 5: RIPOR3 promotes breast cancer cells metastasis.
Fig. 6: RIPOR3 is an important target of METTL3 in driving breast cancer cell growth and metastasis.
Fig. 7: RIPOR3 is required for the EGFR–PI3K–Akt pathway activation.
Fig. 8: RIPOR3 promotes breast cancer cell proliferation, migration and invasion through the EGFR and Akt activation.

Similar content being viewed by others

Data availability

The m6A-seq data have been deposited in the GEO repository under the accession numbers GEO: GSE264247 and GSE264245. The RNA-seq data have been deposited in the GEO repository under the accession number GEO: GSE263916. The IP–MS data have been deposited to the ProteomeXchange Consortium via the iProX repository with the data set identifier IPX0009452001 (URL:https://www.iprox.cn/page/SSV024.html;url=1723740855494Zi2E).

References

  1. Jiang XL, Liu BY, Nie Z, Duan LC, Xiong QX, Jin ZX, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi HL, Wei JB, He C. Where, when, and how: context-dependent functions of rna methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5′ UTR m(6)A promotes Cap-independent translation. Cell. 2015;163:999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao W, Adhikari S, Dahal U, Chen Y-S, Hao Y-J, Sun B-F, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61:507–19.

    Article  CAS  PubMed  Google Scholar 

  5. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li A, Chen Y-S, Ping X-L, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Feng J, Xue Y, Guan ZY, Zhang DL, Liu Z, et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature. 2017;542:260–260.

    Article  CAS  PubMed  Google Scholar 

  10. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–U284.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–95.

    Article  CAS  PubMed  Google Scholar 

  12. Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue YA, Liu J, Cui XL, Cao J, Luo GZ, Zhang ZZ, et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32:415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M, Jacob D, et al. Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nat Commun. 2021;12:3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YJ, Yang B, Lai Q, Shi JF, Peng JY, Zhang Y, et al. Reprogramming of m6A epitranscriptome is crucial for shaping of transcriptome and proteome in response to hypoxia. RNA Biol. 2021;18:131–43.

    Article  CAS  PubMed  Google Scholar 

  18. Liu C, Sun HX, Yi YP, Shen WG, Li K, Xiao Y, et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol. 2023;41:355.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

  21. Merlin JL, Lion M, Wong J, Bachelot T, André F, Treilleux I, et al. Quantitative analysis of tumor expression of phosphoproteins from PI3-kinase and MAP-kinase signaling pathways as biomarkers of the biological and clinical activity of trastuzumab and everolimus in breast cancer: Unicancer RADHER phase II trial results. Cancer Res. 2013;73(24 Suppl): Abstract nr P1-08-27.

  22. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang CZ, Samanta D, Lu HQ, Bullen JW, Zhang HM, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–E2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu XY, Feng MX, Hao XD, Gao ZH, Wu ZX, Wang YL, et al. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop. Oncogene. 2023;42:2047–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther. 2019;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.

    Article  CAS  PubMed  Google Scholar 

  27. Uribe ML, Marrocco I, Yarden Y. EGFR in cancer: signaling mechanisms, drugs, and acquired resistance. Cancers. 2021;13:2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: recent advances and prospects. Int J Biol Sci. 2022;18:800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan C, Xiong J, Zhou Z, Li Q, Gao C, Zhang M, et al. A cleaved METTL3 potentiates the METTL3-WTAP interaction and breast cancer progression. Elife. 2023;12:RP87283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li YP, He XN, Lu X, Gong ZC, Li Q, Zhang L, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022;13:6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinelli E, Morgillo F, Troiani T, Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev. 2017;53:61–69.

    Article  CAS  PubMed  Google Scholar 

  34. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell. 2005;8:287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28.

    Article  CAS  PubMed  Google Scholar 

  36. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu ZK, Sheng WQ, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;552:430–430.

    Article  CAS  PubMed  Google Scholar 

  37. Engel M, Eggert C, Kaplick PM, Eder M, Röh S, Tietze L, et al. The Role of m6A/mRNA methylation in stress response regulation. Neuron. 2018;99:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu Y, Zhuang XW. m6A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol. 2020;16:955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou J, Wan J, Gao XW, Zhang XQ, Jaffrey SR, Qian SB. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–U332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong F, Qin XY, Wang BF, Li Q, Hu JY, Cheng X, et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 2021;81:5876–88.

    Article  CAS  PubMed  Google Scholar 

  41. Yang K, Zhao Y, Hu J, Gao R, Shi J, Wei X, et al. ALKBH5 induces fibroblast-to-myofibroblast transformation during hypoxia to protect against cardiac rupture after myocardial infarction. J Adv Res. 2024;61:193–209.

    Article  CAS  PubMed  Google Scholar 

  42. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–19.

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-based epitranscriptomic mechanism. Mol Ther. 2020;28:2593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, et al. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol Cell. 2016;62:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cooper AJ, Sequist L, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19:499–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liao C, Zhang Y, Fan C, Herring LE, Liu J, Locasale JW, et al. Identification of BBOX1 as a therapeutic target in triple-negative breast cancer. Cancer Discov. 2020;10:1706–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16:284–7.

    Article  CAS  Google Scholar 

  49. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    Article  PubMed  Google Scholar 

  50. Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW, et al. Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell. 2009;16:413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Wang C, Chen X, Takada M, Fan C, Zheng X, et al. EglN2 associates with the NRF1-PGC1α complex and controls mitochondrial function in breast cancer. EMBO J. 2015;34:2953–70.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Meng J, Lu ZL, Liu H, Zhang L, Zhang SW, Chen YD, et al. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 2014;69:274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu GC, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3.

    Article  CAS  PubMed  Google Scholar 

  55. Olarerin-George AO, Jaffrey SR. MetaPlotR: a Perl/R pipeline for plotting metagenes of nucleotide modifications and other transcriptomic sites. Bioinformatics. 2017;33:1563–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z, Zhan Q, Eckert M, Zhu A, Chryplewicz A, De Jesus DF, et al. RADAR: differential analysis of MeRIP-seq data with a random effect model. Genome Biol. 2019;20:294.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim D, Landmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–U121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  61. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kolde R. Pheatmap: pretty heatmaps. R package version. 2019;1:726.

    Google Scholar 

  63. Huang J, Liang Z, Guan C, Hua S, Jiang K. WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. J Cell Biol. 2021;220:e202007167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yen HY, Liu YC, Chen NY, Tsai CF, Wang YT, Chen YJ, et al. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc Natl Acad Sci USA. 2015;112:6955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of our laboratory for helpful discussions. We thank Dr. Haojian Zhang (Wuhan University) for providing critical plasmids. We also sincerely thank the core facility of the Medical Research Institute at Wuhan University for their wonderful technical support.

Funding

This work is supported by the National Key Research and Development Program of China 2022YFA1305400 (JZ), the National Natural Science Foundation of China 32370762 (JZ) and 32100570 (CY), the Natural Science Foundation of Hubei Province of China 2022CFA008 (JZ), and the Fundamental Research Funds for the Central Universities 2042022dx0003 (JZ).

Author information

Authors and Affiliations

Authors

Contributions

JZ conceived and supervised the project. JX performed most of the experiments and analyzed the data. ZZ helped with most of the Q-PCR assays and m6A dot blot assays. YJ performed most of the bioinformatics analyses. QL performed some of those Co-IP and WB assays. QL, ZG, JG and ZZ helped with animal experiments. CY constructed some of those plasmids and prepared samples for m6A-RIP sequencing and RNA sequencing. JZ, CY and JX wrote the paper with critical comments from all authors.

Corresponding authors

Correspondence to Chaojun Yan or Jing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Zhou, Z., Jiang, Y. et al. Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m6A methylation drives breast cancer progression and metastasis. Oncogene 43, 3426–3441 (2024). https://doi.org/10.1038/s41388-024-03180-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03180-4

Search

Quick links