Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial unfolded protein response-dependent β-catenin signaling promotes neuroendocrine prostate cancer

Abstract

The mitochondrial unfolded protein response (UPRmt) maintains mitochondrial quality control and proteostasis under stress conditions. However, the role of UPRmt in aggressive and resistant prostate cancer is not clearly defined. We show that castration-resistant neuroendocrine prostate cancer (CRPC-NE) harbored highly dysfunctional oxidative phosphorylation (OXPHOS) Complexes. However, biochemical and protein analyses of CRPC-NE tumors showed upregulation of nuclear-encoded OXPHOS proteins and UPRmt in this lethal subset of prostate cancer suggestive of compensatory upregulation of stress signaling. Genetic deletion and pharmacological inhibition of the main chaperone of UPRmt heat shock protein 60 (HSP60) reduced neuroendocrine prostate cancer (NEPC) growth in vivo as well as reverted NEPC cells to a more epithelial-like state. HSP60-dependent aggressive NEPC phenotypes was associated with upregulation of β-catenin signaling both in cancer cells and in vivo tumors. HSP60 expression rendered enrichment of aggressive prostate cancer signatures and metastatic potential were inhibited upon suppression of UPRmt. We discovered that UPRmt promoted OXPHOS functions including mitochondrial bioenergetics in CRPC-NE via regulation of β-catenin signaling. Mitochondrial biogenesis facilitated cisplatin resistance and inhibition of UPRmt resensitizes CRPC-NE cells to cisplatin. Together, our findings demonstrated that UPRmt promotes mitochondrial health via upregulating β-catenin signaling and UPRmt represents viable therapeutic target for NEPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondria are dysfunctional in neuroendocrine prostate tumors.
Fig. 2: HSP60 expression is upregulated in NEPC.
Fig. 3: HSP60 regulates NEPC markers.
Fig. 4: Loss of HSP60 in NEPC reduces oncogenic burden in vivo.
Fig. 5: HSP60 mRNA expression correlates with enrichment in gene sets involving mitochondrial function and aggressive phenotypes.
Fig. 6: HSP60 inhibition reduces migration and invasion in CRPC cells.
Fig. 7: HSP60 and β-catenin alter mitochondrial bioenergetics.
Fig. 8: HSP60 inhibition sensitizes aggressive prostate cancer cells to cisplatin.

Similar content being viewed by others

Data availability

All data associated with this study are present in the paper and/or the Supplementary informations.

References

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.

    Article  PubMed  Google Scholar 

  2. Culig Z. Targeting the androgen receptor in prostate cancer. Expert Opin Pharmacother. 2014;15:1427–37.

    Article  CAS  PubMed  Google Scholar 

  3. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019;25:6916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89.e476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spetsieris N, Boukovala M, Patsakis G, Alafis I, Efstathiou E. Neuroendocrine and aggressive-variant prostate cancer. Cancers. 2020;12:3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19:3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rattan SIS, Kyriazis M. The science of hormesis in health and longevity. Elsevier/Academic Press: London, United Kingdom, 2019.

  9. O’Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial stress response and cancer. Trends Cancer. 2020;6:688–701.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 2016;26:2037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cappello F, Conway de Macario E, Marasa L, Zummo G, Macario AJ. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther. 2008;7:801–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, et al. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis. 2018;9:161.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, et al. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest. 2022;132:e149906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92:351–66.

    Article  CAS  PubMed  Google Scholar 

  16. Woytash J, Inigo JR, Chandra D. Assessing oligomerization status of mitochondrial OXPHOS Complexes via blue native page. Methods Mol Biol. 2022;2413:55–62.

    Article  CAS  PubMed  Google Scholar 

  17. Gingrich JR, Barrios RJ, Foster BA, Greenberg NM. Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis. 1999;2:70–75.

    Article  CAS  PubMed  Google Scholar 

  18. Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol. 2017;24:800–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 2013;13:134–42.

    Article  CAS  PubMed  Google Scholar 

  20. Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res. 2014;20:890–903.

    Article  CAS  PubMed  Google Scholar 

  21. Ciarlo M, Benelli R, Barbieri O, Minghelli S, Barboro P, Balbi C, et al. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int J Cancer. 2012;131:582–90.

    Article  CAS  PubMed  Google Scholar 

  22. Moparthi L, Pizzolato G, Koch S. Wnt activator FOXB2 drives the neuroendocrine differentiation of prostate cancer. Proc Natl Acad Sci USA. 2019;116:22189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Unno K, Chalmers ZR, Pamarthy S, Vatapalli R, Rodriguez Y, Lysy B, et al. Activated ALK cooperates with N-Myc via Wnt/beta-catenin signaling to induce neuroendocrine prostate cancer. Cancer Res. 2021;81:2157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hailesellasse Sene K, Porter CJ, Palidwor G, Perez-Iratxeta C, Muro EM, et al. Gene function in early mouse embryonic stem cell differentiation. BMC Genom. 2007;8:85.

    Article  Google Scholar 

  25. Vergara D, Stanca E, Guerra F, Priore P, Gaballo A, Franck J, et al. Beta-catenin knockdown affects mitochondrial biogenesis and lipid metabolism in breast cancer cells. Front Physiol. 2017;8:544.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma Y, Ma M, Sun J, Li W, Li Y, Guo X, et al. CHIR-99021 regulates mitochondrial remodelling via beta-catenin signalling and miRNA expression during endodermal differentiation. J Cell Sci. 2019;132:jcs229948.

    Article  CAS  PubMed  Google Scholar 

  27. Akamatsu S, Inoue T, Ogawa O, Gleave ME. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol. 2018;25:345–51.

    Article  CAS  PubMed  Google Scholar 

  28. Flechon A, Pouessel D, Ferlay C, Perol D, Beuzeboc P, Gravis G, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol. 2011;22:2476–81.

    Article  CAS  PubMed  Google Scholar 

  29. Waseem M, Bhardwaj M, Tabassum H, Raisuddin S, Parvez S. Cisplatin hepatotoxicity mediated by mitochondrial stress. Drug Chem Toxicol. 2015;38:452–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res. 2006;12:5817–25.

    Article  CAS  PubMed  Google Scholar 

  31. Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 2011;41:661–8.

    Article  CAS  PubMed  Google Scholar 

  32. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE. 2013;8:e81162.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tang Y, Yang Y, Luo J, Liu S, Zhan Y, Zang H, et al. Overexpression of HSP10 correlates with HSP60 and Mcl-1 levels and predicts poor prognosis in non-small cell lung cancer patients. Cancer Biomark. 2021;30:85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rappa F, Pitruzzella A, Marino Gammazza A, Barone R, Mocciaro E, Tomasello G, et al. Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer. Cell Stress Chaperones. 2016;21:927–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen FM, Huang LJ, Ou-Yang F, Kan JY, Kao LC, Hou MF. Activation of mitochondrial unfolded protein response is associated with Her2-overexpression breast cancer. Breast Cancer Res Treat. 2020;183:61–70.

    Article  CAS  PubMed  Google Scholar 

  36. Huang YH, Lin KH, Yu JS, Wu TJ, Lee WC, Chao CC, et al. Targeting HSP60 by subcutaneous injections of jetPEI/HSP60-shRNA destabilizes cytoplasmic survivin and inhibits hepatocellular carcinoma growth. Mol Carcinog. 2018;57:1087–101.

    Article  CAS  PubMed  Google Scholar 

  37. Tang H, Li J, Liu X, Wang G, Luo M, Deng H. Down-regulation of HSP60 Suppresses the Proliferation of Glioblastoma Cells via the ROS/AMPK/mTOR Pathway. Sci Rep. 2016;6:28388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li XS, Xu Q, Fu XY, Luo WS. Heat shock protein 60 overexpression is associated with the progression and prognosis in gastric cancer. PLoS ONE. 2014;9:e107507.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Campanella C, Rappa F, Sciume C, Marino Gammazza A, Barone R, Bucchieri F, et al. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer. 2015;121:3230–9.

    Article  CAS  PubMed  Google Scholar 

  40. He Y, Wu Y, Mou Z, Li W, Zou L, Fu T, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteom Clin Appl. 2007;1:336–42.

    Article  CAS  Google Scholar 

  41. Wu X, Guo J, Chen Y, Liu X, Yang G, Wu Y, et al. The 60-kDa heat shock protein regulates energy rearrangement and protein synthesis to promote proliferation of multiple myeloma cells. Br J Haematol. 2020;190:741–52.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang YJ, Lee SP, Kim SY, Choi YH, Kim MJ, Lee CH, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J. 2009;50:399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L, et al. HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer. Sci Rep. 2019;9:12628.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rusthoven CG, Carlson JA, Waxweiler TV, Yeh N, Raben D, Flaig TW, et al. The prognostic significance of Gleason scores in metastatic prostate cancer. Urol Oncol. 2014;32:707–13.

    Article  PubMed  Google Scholar 

  45. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50:125–8.

    CAS  PubMed  Google Scholar 

  46. Ross RW, Xie W, Regan MM, Pomerantz M, Nakabayashi M, Daskivich TJ, et al. Efficacy of androgen deprivation therapy (ADT) in patients with advanced prostate cancer: association between Gleason score, prostate-specific antigen level, and prior ADT exposure with duration of ADT effect. Cancer. 2008;112:1247–53.

    Article  PubMed  Google Scholar 

  47. de la Taille A, Rubin MA, Chen MW, Vacherot F, de Medina SG, Burchardt M, et al. Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin Cancer Res. 2003;9:1801–7.

    PubMed  Google Scholar 

  48. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer. 2004;101:1345–56.

    Article  CAS  PubMed  Google Scholar 

  49. Wan X, Liu J, Lu JF, Tzelepi V, Yang J, Starbuck MW, et al. Activation of beta-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res. 2012;18:726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee E, Ha S, Logan SK. Divergent Androgen receptor and beta-catenin signaling in prostate cancer cells. PLoS ONE. 2015;10:e0141589.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yan FQ, Wang JQ, Tsai YP, Wu KJ. HSP60 overexpression increases the protein levels of the p110alpha subunit of phosphoinositide 3-kinase and c-Myc. Clin Exp Pharm Physiol. 2015;42:1092–7.

    Article  CAS  Google Scholar 

  52. Tsai YP, Yang MH, Huang CH, Chang SY, Chen PM, Liu CJ, et al. Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis. 2009;30:1049–57.

    Article  CAS  PubMed  Google Scholar 

  53. Brown-Clay JD, Shenoy DN, Timofeeva O, Kallakury BV, Nandi AK, Banerjee PP. PBK/TOPK enhances aggressive phenotype in prostate cancer via beta-catenin-TCF/LEF-mediated matrix metalloproteinases production and invasion. Oncotarget. 2015;6:15594–609.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network. Cancer Lett. 2013;336:379–89.

    Article  CAS  PubMed  Google Scholar 

  55. Yu X, Wang Y, Jiang M, Bierie B, Roy-Burman P, Shen MM, et al. Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate. 2009;69:249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Francis JC, Thomsen MK, Taketo MM, Swain A. beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 2013;9:e1003180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costa R, Peruzzo R, Bachmann M, Monta GD, Vicario M, Santinon G, et al. Impaired mitochondrial ATP production downregulates Wnt signaling via ER stress induction. Cell Rep. 2019;28:1949–60.e1946.

    Article  CAS  PubMed  Google Scholar 

  58. Mezhybovska M, Yudina Y, Abhyankar A, Sjolander A. Beta-catenin is involved in alterations in mitochondrial activity in non-transformed intestinal epithelial and colon cancer cells. Br J Cancer. 2009;101:1596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, Elledge SJ. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev. 2010;24:1507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bernkopf DB, Jalal K, Bruckner M, Knaup KX, Gentzel M, Schambony A, et al. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. J Cell Biol. 2018;217:1383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 2015;6:14777–95.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vellinga TT, Borovski T, de Boer VC, Fatrai S, van Schelven S, Trumpi K, et al. SIRT1/PGC1alpha-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res. 2015;21:2870–9.

    Article  CAS  PubMed  Google Scholar 

  63. Salem AF, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle. 2012;11:4174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the NCI of the NIH under Award Number R01-CA160685 and R01CA246437 (to D. Chandra), the American Cancer Society under award number MBG-21-048-01-MBG and RSG-12-214-01 – CCG (to D. Chandra), Roswell Park Alliance Foundation (to DC), and in part by the NCI Center Support Grant P30-CA016056 to the Roswell Park Comprehensive Cancer Center that supports the Translational Imaging, Pathology Network, Flow and Image Cytometry, Bioinformatics, Biostatistics, Genomic, Animal housing facility Shared Resources and the Onsite Supply Center. We thank Drs. David Goodrich, Dean G Tang, Barbara Foster, and Raghu Gogada for their technical support and reagents.

Author information

Authors and Affiliations

Authors

Contributions

DC, JAW, and RK designed experiments. JAW, RK, AKC, CD, AW, NY, MB, JRI, and JW performed experiments. JS helped with analysis of MR imaging and PB provided HSPD1 mouse. JAW performed statistical and bioinformatic analysis. DC, JAW, and RK analyzed the data. DC and JAW wrote the paper. DC conceived the idea and supervised the study.

Corresponding author

Correspondence to Dhyan Chandra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations. For all mouse experiments (including all GEMM and tumor xenograft experiments), approval has been obtained from the Institutional Animal Care and Use Committee at Roswell Park Comprehensive Cancer Center (IACUC Approval # 1306 M). This work does not involve human research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woytash, J.A., Kumar, R., Chaudhary, A.K. et al. Mitochondrial unfolded protein response-dependent β-catenin signaling promotes neuroendocrine prostate cancer. Oncogene 44, 820–834 (2025). https://doi.org/10.1038/s41388-024-03261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03261-4

This article is cited by

Search

Quick links