Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phospho-TRIM21 orchestrates RPA2 ubiquitination switch to promote homologous recombination and tumor radio/chemo-resistance

Abstract

RPA2, a key component of the RPA complex, is essential for single-stranded DNA (ssDNA) binding and DNA repair. However, the regulation of RPA2-ssDNA interaction and the recruitment of repair proteins following DNA damage remain incompletely understood. Our study uncovers a novel mechanism by which phosphorylated TRIM21 (Phospho-TRIM21) regulates RPA2 ubiquitination, thereby modulating homologous recombination and tumor radio/chemo-resistance. In the absence of DNA damage, TRIM21 mediates K63-linked ubiquitination of RPA2, countering K6-linked ubiquitination. Upon DNA damage, ubiquitination-modified RPA2 binds ssDNA, stabilizing the DNA structure and facilitating ATRIP/ATR recruitment. ATR subsequently phosphorylates TRIM21 at Ser41, leading to the dissociation of the TRIM21-RPA2 complex and a shift in RPA2 ubiquitination from K63 to K6 linkage. This shift maintains RPA2 ubiquitination homeostasis and stabilizes the RPA2-ATRIP complex, which is crucial for efficient homologous recombination (HR) repair and enhanced tumor radio/chemo-resistance. We also demonstrate that TRIM21 is frequently upregulated in cancers, and its depletion sensitizes cancer cells to radio/chemotherapy, suggesting its potential as a therapeutic target. This study provides novel insights into TRIM21’s role in the DNA damage response and its implications for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction between TRIM21 and RPA2.
Fig. 2: TRIM21 regulates RPA2 ubiquitination: K63 promotion and K6 inhibition in DBD-D.
Fig. 3: TRIM21 depends on its PRYSPRY ___domain for recruitment to DNA damage sites.
Fig. 4: TRIM21 regulates the binding of RPA2 to ssDNA through ubiquitination, promoting the recruitment of ATRIP and driving HR repair.
Fig. 5: ATR-mediated TRIM21 phosphorylation orchestrates RPA2 ubiquitination switch in DDR.
Fig. 6: TRIM21 is implicated in tumor cell survival and carcinogenesis, and its deletion renders cells sensitive to radiation and chemotherapeutic agents.
Fig. 7: Schematic illustration of TRIM21 regulating HR repair mechanism.

Similar content being viewed by others

Data availability

Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett. 2020;474:106–17.

    Article  CAS  PubMed  Google Scholar 

  2. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, et al. A role for small RNAs in DNA double-strand break repair. Cell. 2012;149:101–12.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ. 2023;30:1900–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lou J, Chen H, Han J, He H, Huen MSY, Feng XH, et al. AUNIP/C1orf135 directs DNA double-strand breaks towards the homologous recombination repair pathway. Nat Commun. 2017;8:985.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhou X, Sekino Y, Li HT, Fu G, Yang Z, Zhao S, et al. SETD2 deficiency confers sensitivity to dual inhibition of DNA methylation and PARP in kidney cancer. Cancer Res. 2023;83:3813–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tilgner K, Neganova I, Moreno-Gimeno I, AL-Aama JY, Burks D, Yung S, et al. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death Differ. 2013;20:1089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan J, Chen J. FIGNL1-containing protein complex is required for efficient homologous recombination repair. Proc Natl Acad Sci. 2013;110:10640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shahar OD, Ram EVSR, Shimshoni E, Hareli S, Meshorer E, Goldberg M. Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells. Oncogene. 2012;31:3495–504.

    Article  CAS  PubMed  Google Scholar 

  10. Cao K, Wang R, Li L, Liao Y, Hu X, Li R, et al. Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination. Oncogene. 2024;43:35–46.

    Article  CAS  PubMed  Google Scholar 

  11. Anantha RW, Sokolova E, Borowiec JA. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci. 2008;105:12903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang B, Tang Z, Li L, Lu LY. NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis. Cell Death Differ. 2020;27:2176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293:10502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, et al. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci USA. 2023;120:e2303479120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weisshart K, Pestryakov P, Smith RWP, Hartmann H, Kremmer E, Lavrik O, et al. Coordinated regulation of replication protein A activities by its subunits p14 and p32. J Biol Chem. 2004;279:35368–76.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu X, Xue J, Jiang X, Gong Y, Gao C, Cao T, et al. TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination. Nucleic Acids Res. 2022;50:1517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang N, Li P, Sun X, Tong L, Dong X, Zhang X, et al. TRIM21 mediates the synergistic effect of Olaparib and Sorafenib by degrading BRCA1 through ubiquitination in TNBC. NPJ Breast Cancer. 2023;9:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foss S, Watkinson R, Sandlie I, James LC, Andersen JT. TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol Rev. 2015;268:328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun. 2023;14:865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brauner S, Ivanchenko M, Thorlacius GE, Ambrosi A, Wahren-Herlenius M. The Sjögren’s syndrome-associated autoantigen Ro52/TRIM21 modulates follicular B cell homeostasis and immunoglobulin production. Clin Exp Immunol. 2018;194:315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alomari M. TRIM21 - A potential novel therapeutic target in cancer. Pharmacol Res. 2021;165:105443.

    Article  CAS  PubMed  Google Scholar 

  22. Guha A, Ahuja D, Das Mandal S, Parasar B, Deyasi K, Roy D, et al. Integrated regulation of HuR by translation repression and protein degradation determines pulsatile expression of p53 Under DNA damage. iScience. 2019;15:342–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Zhou Y, Oyang L, Han Y, Xia L, Lin J, et al. LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-κB activity in nasopharyngeal carcinoma. Oncogene. 2019;38:5062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci USA. 2007;104:6200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dickson C, Fletcher AJ, Vaysburd M, Yang JC, Mallery DL, Zeng J, et al. Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. Elife. 2018;7:e32660.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun Y, McCorvie TJ, Yates LA, Zhang X. Structural basis of homologous recombination. Cell Mol Life Sci. 2020;77:3–18.

    Article  CAS  PubMed  Google Scholar 

  27. Feldkamp MD, Mason AC, Eichman BF, Chazin WJ. Structural analysis of replication protein A recruitment of the DNA damage response protein SMARCAL1. Biochemistry. 2014;53:3052–61.

    Article  CAS  PubMed  Google Scholar 

  28. Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 2015;25:9–23.

    Article  PubMed  Google Scholar 

  29. Hsu CH, Yu YL. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren’s syndrome, cancers, and cancer metabolism. Cancer Cell Int. 2023;23:289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, et al. The ubiquitin E3 Ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell Mol Gastroenterol Hepatol. 2021;11:1369–85.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ball HL, Myers JS, Cortez D. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell. 2005;16:2372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8

    Article  CAS  PubMed  Google Scholar 

  33. Gan X, Zhang Y, Jiang D, Shi J, Zhao H, Xie C, et al. Proper RPA acetylation promotes accurate DNA replication and repair. Nucleic Acids Res. 2023;51:5565–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin YC, Wang Y, Hsu R, Giri S, Wopat S, Arif MK, et al. PCNA-mediated stabilization of E3 ligase RFWD3 at the replication fork is essential for DNA replication. Proc Natl Acad Sci. 2018;115:13282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H, Nakajima K, et al. RFWD3-Mediated Ubiquitination Promotes Timely Removal of Both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol Cell. 2017;66:622–634.e8.

    Article  CAS  PubMed  Google Scholar 

  36. Chen B, Xu F, Gao Y, Hu G, Zhu K, Lu H, et al. DNA damage-induced translocation of mitochondrial factor HIGD1A into the nucleus regulates homologous recombination and radio/chemo-sensitivity. Oncogene. 2022;41:1918–30.

    Article  CAS  PubMed  Google Scholar 

  37. Lee AYS. A review of the role and clinical utility of anti-Ro52/TRIM21 in systemic autoimmunity. Rheumatol Int. 2017;37:1323–33.

    Article  CAS  PubMed  Google Scholar 

  38. Holwek E, Opinc-Rosiak A, Sarnik J, Makowska J. Ro52/TRIM21 - From host defense to autoimmunity. Cell Immunol. 2023;393-394:104776.

    Article  CAS  PubMed  Google Scholar 

  39. Rajsbaum R, Stoye JP, O’Garra A. Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol. 2008;38:619–30.

    Article  CAS  PubMed  Google Scholar 

  40. Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.

    Article  CAS  PubMed  Google Scholar 

  41. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11:792–804.

    Article  CAS  PubMed  Google Scholar 

  42. Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61–92.

    Article  CAS  PubMed  Google Scholar 

  43. Chen R, Wold MS. Replication protein A: single-stranded DNA’s first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays. 2014;36:1156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi JH, Lindsey-Boltz LA, Kemp M, Mason AC, Wold MS, Sancar A. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc Natl Acad Sci. 2010;107:13660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Excellent Young Scholars (12122510), the National Natural Science Foundation of China (32171240), the HFIPS Director’s Fund (BJPY2021B07 and BJPY2023A010), National Postdoctoral Researcher Assistance Program (GZC20232718) and Youth Project of the President’s Fund of Hefei Institutes of Physical Science(E36CGG2F).

Author information

Authors and Affiliations

Authors

Contributions

J.Zhang: Conceptualization, data curation, formal analysis, validation, investigation, visualization, writing-original draft, writing-review and editing. B.Chen, F.Xu, R.Wang, X.Zhao, Z.Yao, J.Zhang, S.Zhou: investigation. A.Xu, L.Wu: Project administration, supervision. G.Zhao: Conceptualization, resources, data curation, formal analysis, supervision, funding acquisition, investigation, project administration, writing-review, and editing.

Corresponding author

Correspondence to Guoping Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, B., Xu, F. et al. Phospho-TRIM21 orchestrates RPA2 ubiquitination switch to promote homologous recombination and tumor radio/chemo-resistance. Oncogene 44, 1106–1117 (2025). https://doi.org/10.1038/s41388-025-03288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-025-03288-1

Search

Quick links