Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TP53INP2 promotes mitophagic degradation of YAP to impede dedifferentiated liposarcoma development

Abstract

Dedifferentiated liposarcoma (DDLPS) accounts for 15–20% of liposarcoma (LPS) and has high rates of local recurrence and distant metastasis. Hyperactivation of yes-associated protein (YAP) has been implicated in DDLPS development. However, the mechanisms that drive aberrant YAP signaling remain largely unknown. Here, we show that tumor protein p53 inducible nuclear protein 2 (TP53INP2) is a potential negative modulator of the malignant progression of DDLPS. The TP53INP2 protein expression level in tumor tissues from 79 patients with DDLPS decreased progressively. Compared with primary tumors, recurrent tumors also exhibited reduced TP53INP2 expression. More importantly, low TP53INP2 expression is correlated with poor prognosis. TP53INP2 gain- or loss-of-function experiments in DDLPS cell lines showed profound inhibitory effects on processes and properties linked with cancer malignancy, such as proliferation, migration, stemness and dedifferentiation. Mechanistically, TP53INP2 is located mainly in mitochondria and promotes mitophagic degradation of YAP in a VDAC1-dependent manner. The WW ___domain in YAP and the PPTY motif in VDAC1 are required for their interaction. Taken together, these data demonstrate that TP53INP2 represses the malignant progression of DDLPS by inactivating YAP via a mitophagy-dependent mechanism and that TP53INP2 may constitute a novel prognostic biomarker for advanced DDLPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lower TP53INP2 expression is related with poor prognosis in DDLPS.
Fig. 2: TP53INP2 deficiency promotes the malignant progression of DDLPS.
Fig. 3: TP53INP2 promotes mitophagy in DDLPS cells.
Fig. 4: TP53INP2 inhibits YAP activation.
Fig. 5: TP53INP2 promotes YAP degradation in a mitophagy-dependent manner.
Fig. 6: VDAC1 is required for YAP degradation via TP53INP2-mediated mitophagy.

Similar content being viewed by others

Data availability

The RNA-seq data discussed in this publication has been deposited into the Gene Expression Omnibus (GSE263328). All study data are included in this article and Supplementary Materials.

References

  1. Crago AM, Dickson MA. Liposarcoma: Multimodality Management and Future Targeted Therapies. Surg Oncol Clin N. Am. 2016;25:761–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO. The WHO Classification of Tumours Soft Tissue and Bone Tumours, 5th edn. Lyon: IARC Press, 2020.

  3. Thway K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin Diagn Pathol. 2019;36:112–21.

    Article  PubMed  Google Scholar 

  4. Thway K, Jones RL, Noujaim J, Zaidi S, Miah AB, Fisher C. Dedifferentiated Liposarcoma: Updates on Morphology, Genetics, and Therapeutic Strategies. Adv Anat Pathol. 2016;23:30–40.

    Article  CAS  PubMed  Google Scholar 

  5. Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol. 2011;23:373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Italiano A, Bianchini L, Keslair F, Bonnafous S, Cardot-Leccia N, Coindre JM, et al. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer. 2008;122:2233–41.

    Article  CAS  PubMed  Google Scholar 

  7. Fullenkamp CA, Hall SL, Jaber OI, Pakalniskis BL, Savage EC, Savage JM, et al. TAZ and YAP are frequently activated oncoproteins in sarcomas. Oncotarget. 2016;7:30094–108.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shrestha M, Ando T, Chea C, Sakamoto S, Nishisaka T, Ogawa I, et al. The transition of tissue inhibitor of metalloproteinases from -4 to -1 induces aggressive behavior and poor patient survival in dedifferentiated liposarcoma via YAP/TAZ activation. Carcinogenesis. 2019;40:1288–97.

    Article  CAS  PubMed  Google Scholar 

  9. Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel). 2021;13:3100.

  10. Isfort I, Elges S, Cyra M, Berthold R, Renner M, Mechtersheimer G, et al. Prevalence of the Hippo Effectors YAP1/TAZ in Tumors of Soft Tissue and Bone. Sci Rep. 2019;9:19704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Wan W. The bifunctional role of TP53INP2 in transcription and autophagy. Autophagy. 2020;16:1341–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu Y, Wan W, Shou X, Huang R, You Z, Shou Y, et al. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters. Autophagy. 2016;12:1118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, et al. The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 2010;11:37–44.

    Article  CAS  PubMed  Google Scholar 

  15. Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, et al. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell. 2009;20:870–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romero M, Sabate-Perez A, Francis VA, Castrillon-Rodriguez I, Diaz-Ramos A, Sanchez-Feutrie M, et al. TP53INP2 regulates adiposity by activating beta-catenin through autophagy-dependent sequestration of GSK3beta. Nat Cell Biol. 2018;20:443–54.

    Article  CAS  PubMed  Google Scholar 

  17. Sabate-Perez A, Romero M, Sanchez-Fernandez-de-Landa P, Carobbio S, Mouratidis M, Sala D, et al. Autophagy-mediated NCOR1 degradation is required for brown fat maturation and thermogenesis. Autophagy. 2023;19:904–25.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Wang L, Gu Y, Shu Y, Shen Y, Xu Q. Integrin alpha6(high) cell population functions as an initiator in tumorigenesis and relapse of human liposarcoma. Mol Cancer Ther. 2011;10:2276–86.

    Article  CAS  PubMed  Google Scholar 

  19. Xue W, Li X, Li W, Wang Y, Jiang C, Zhou L, et al. Intracellular CYTL1, a novel tumor suppressor, stabilizes NDUFV1 to inhibit metabolic reprogramming in breast cancer. Signal Transduct Target Ther. 2022;7:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao J, Fan M, Xiang G, Wang J, Zhang X, Guo W, et al. Diptoindonesin G promotes ERK-mediated nuclear translocation of p-STAT1 (Ser727) and cell differentiation in AML cells. Cell Death Dis. 2017;8:e2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan M, Chen J, Gao J, Xue W, Wang Y, Li W, et al. Triggering a switch from basal- to luminal-like breast cancer subtype by the small-molecule diptoindonesin G via induction of GABARAPL1. Cell Death Dis. 2020;11:635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singer S, Antonescu CR, Riedel E, Brennan MF. Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann Surg. 2003;238:358–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu Y, Li X, Xue W, Pang J, Meng Y, Shen Y, et al. TP53INP2-related basal autophagy is involved in the growth and malignant progression in human liposarcoma cells. Biomed Pharmacother. 2017;88:562–68.

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Li W, Yang Y, Hu Y, Gu Y, Shu Y, et al. High expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2b blocks cell differentiation in human liposarcoma cells. Life Sci. 2014;99:37–43.

    Article  CAS  PubMed  Google Scholar 

  25. Chang JY, Yi HS, Kim HW, Shong M. Dysregulation of mitophagy in carcinogenesis and tumor progression. Biochim Biophys Acta Bioenerg. 2017;1858:633–40.

    Article  CAS  PubMed  Google Scholar 

  26. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol. 2011;18:1042–52.

    Article  CAS  PubMed  Google Scholar 

  27. Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci. 2021;46:154–68.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25:51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–31.

    Article  CAS  PubMed  Google Scholar 

  31. Ham SJ, Lee D, Yoo H, Jun K, Shin H, Chung J. Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. Proc Natl Acad Sci USA. 2020;117:4281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol. 2016;26:733–44.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Wan W. TP53INP2 mediates autophagic degradation of ubiquitinated proteins through its ubiquitin-interacting motif. FEBS Lett. 2019;593:1974–82.

    Article  CAS  PubMed  Google Scholar 

  34. Penna F, Ballaro R, Martinez-Cristobal P, Sala D, Sebastian D, Busquets S, et al. Autophagy Exacerbates Muscle Wasting in Cancer Cachexia and Impairs Mitochondrial Function. J Mol Biol. 2019;431:2674–86.

    Article  CAS  PubMed  Google Scholar 

  35. Xun J, Song X, Gao S, Yang H, Li Z, Li L. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as risk biomarker for liposarcoma. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27:3403–4.

    CAS  PubMed  Google Scholar 

  36. Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, et al. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med. 2023;21:635.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eisinger-Mathason TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP, et al. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci USA. 2015;112:E3402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carmagnani Pestana R, Moyers JT, Roszik J, Sen S, Hong DS, Naing A, et al. Impact of Biomarker-Matched Therapies on Outcomes in Patients with Sarcoma Enrolled in Early-Phase Clinical Trials (SAMBA 101). Clin Cancer Res. 2023;29:1708–18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dianhua Chen (School of Life Sciences, Nanjing University) for technological assistance.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 81974504, 82230116), National Key R&D Program of China (Grant No. 2022YFC3500202), and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-C-202208).

Author information

Authors and Affiliations

Authors

Contributions

YS and QX designed this study. XF and RC collected the clinical samples. YXW, YH, LWW, ZXC, LZ and GYL performed experiments and analysis data. JWY and RC contributed to the discussion. YXW. and YS wrote the manuscript.

Corresponding authors

Correspondence to Rui Chen, Qiang Xu or Yan Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments related to clinical specimens were conducted in accordance with the ethical standards of the Declaration of Helsinki and according to national and international guidelines and were approved by the Research Ethics Committee of Shanghai Changhai Hospital (Approval number: CHEC2019-142). Informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, Y., Wang, L. et al. TP53INP2 promotes mitophagic degradation of YAP to impede dedifferentiated liposarcoma development. Oncogene 44, 2054–2063 (2025). https://doi.org/10.1038/s41388-025-03358-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-025-03358-4

Search

Quick links