Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SNRPB-mediated regulation of DDX39A splicing promotes ovarian cancer progression by regulating α6 integrin subunit expression

Abstract

Dysfunction or aberrant expression of DEAD-box RNA helicases might play a role in the initiation and progression of human cancers. Nevertheless, the key regulator and underlying molecular mechanism have yet to be fully elucidated in ovarian cancer. This study identified DDX39A as one of the prominently upregulated genes in ovarian cancer through a systematic analysis of RNA helicase expression profiles using the CPTAC and TCGA ovarian cancer datasets. High expression of DDX39A was confirmed in paraffin-embedded ovarian cancer samples. Specifically, elevated DDX39A expression was found to be associated with poor overall survival in ovarian cancer patients. Antisense oligonucleotide-mediated DDX39A silencing led to a decrease in the proliferation capacity of a CDX model and a PDX model. Furthermore, DDX39A expression is regulated by the splicing factor SNRPB. SNRPB depletion or DDX39A knockdown induced the retention of DDX39A introns 6 and 8 to generate the noncoding transcript DDX39A-209, which yielded premature termination codons and resulted in nonsense-mediated RNA decay and decreased expression of the DDX39A protein. DDX39A silencing reduced the proliferative and metastatic capacities of SNRPB-overexpressing cells, indicating that DDX39A mediates the oncogenic function of SNRPB in ovarian cancer cells. In addition, RNA-Seq data analysis revealed that DDX39A promotes the proliferation and metastasis of ovarian cancer cells through the regulation of exon skipping of ITGA6 to produce the oncogenic ITGA6A transcript. These findings suggest that the SNRPB/DDX39A/ITGA6 axis plays critically important role in the progression of ovarian cancer, which increases our understanding of the role of DEAD-box RNA helicases and provides a viable therapeutic target for ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DDX39A is identified as an important DEAD-box RNA helicase in ovarian cancer.
Fig. 2: DDX39A increases growth rate and metastasis capacity of ovarian cancer cells.
Fig. 3: ASO-mediated DDX39A silencing inhibits the proliferation capacity of ovarian cancer in vitro and in vivo.
Fig. 4: DDX39A was identified as the key downstream target of SNRPB through RNA-seq in ovarian cancer cells.
Fig. 5: SNRPB silencing induces DDX39A intron 6 and 8 retentions in ovarian cancer cells.
Fig. 6: Silencing of DDX39A decreased the oncogenic effects of SNRPB overexpression in ovarian cancer cells.
Fig. 7: ITGA6 was identified as a critical downstream target gene of DDX39A through RNA-seq of ovarian cancer cells.
Fig. 8: DDX39A mediates ITGA6 exon skipping in ovarian cancer cells.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Cotto KC, Feng YY, Ramu A, Richters M, Freshour SL, Skidmore ZL, et al. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat Commun. 2023;14:1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradley RK, Anczukow O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linder P, Jankowsky E. From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12:505–16.

    Article  CAS  PubMed  Google Scholar 

  6. Ali MAM. The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol. 2021;26:795–825.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 2022;75:847–65.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao G, Yuan H, Li Q, Zhang J, Guo Y, Feng T, et al. DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct Target Ther. 2022;7:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le TK, Cherif C, Omabe K, Paris C, Lannes F, Audebert S, et al. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer. Mol Ther. 2023;31:471–86.

    Article  CAS  PubMed  Google Scholar 

  10. Sugiura T, Nagano Y, Noguchi Y. DDX39, upregulated in lung squamous cell cancer, displays RNA helicase activities and promotes cancer cell growth. Cancer Biol Ther. 2007;6:957–64.

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Li P, Wang C, Zhang D, Zeng L, Liu X, et al. DEAD-box RNA Helicase 39 Promotes Invasiveness and Chemoresistance of ER-positive Breast Cancer. J Cancer. 2020;11:1846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bao Y, Jiang A, Dong K, Gan X, Gong W, Wu Z, et al. DDX39 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with clear cell renal cell carcinoma. Int J Biol Sci. 2021;17:3158–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diao Y, Li Y, Wang Z, Wang S, Li P, Kong B. SF3B4 promotes ovarian cancer progression by regulating alternative splicing of RAD52. Cell Death Dis. 2022;13:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Chen Z, Peng J, Yuan C, Yan S, Yang N, et al. The splicing factor SNRPB promotes ovarian cancer progression through regulating aberrant exon skipping of POLA1 and BRCA2. Oncogene. 2023;42:2386–401.

    Article  CAS  PubMed  Google Scholar 

  15. Goel HL, Gritsko T, Pursell B, Chang C, Shultz LD, Greiner DL, et al. Regulated splicing of the alpha6 integrin cytoplasmic ___domain determines the fate of breast cancer stem cells. Cell Rep. 2014;7:747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li F, Zhao C, Diao Y, Wang Z, Peng J, Yang N, et al. MEX3A promotes the malignant progression of ovarian cancer by regulating intron retention in TIMELESS. Cell Death Dis. 2022;13:553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei Y, Chen Z, Li Y, Song K. The splicing factor WBP11 mediates MCM7 intron retention to promote the malignant progression of ovarian cancer. Oncogene. 2024;43:1565–78.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14:2707–13.

    Article  CAS  PubMed  Google Scholar 

  19. Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gyorffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience. 2023;45:1889–98.

  21. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–W560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Bruijn I, Kundra R, Mastrogiacomo B, Tran TN, Sikina L, Mazor T, et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023;83:3861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–W221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan TZ, Yang H, Ye J, Low J, Choolani M, Tan DS, et al. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget. 2015;6:43843–52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13:1194–202.

    Article  CAS  PubMed  Google Scholar 

  26. Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA. 2014;111:E5593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Integrated genomic analyses of ovarian carcinoma. 2011;474:609-15. pCancer Genome AtlasResearch, N.

  28. Groulx JF, Boudjadi S, and Beaulieu JF. MYC regulates alpha6 integrin subunit expression and splicing under its pro-proliferative ITGA6A form in colorectal cancer cells. Cancers. 2018;10.

  29. Wang Y, Li L, Zhang X, Zhao X. Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augment proliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res. 2022;15:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei L, Yin F, Chen C, Li L. Expression of integrin alpha-6 is associated with multi drug resistance and prognosis in ovarian cancer. Oncol Lett. 2019;17:3974–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol. 2023;24:749–69.

    Article  CAS  PubMed  Google Scholar 

  32. Naineni SK, Robert F, Nagar B, Pelletier J. Targeting DEAD-box RNA helicases: The emergence of molecular staples. Wiley Interdiscip Rev RNA. 2023;14:e1738.

    Article  CAS  PubMed  Google Scholar 

  33. Andrisani O, Liu Q, Kehn P, Leitner WW, Moon K, Vazquez-Maldonado N, et al. Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nat Immunol. 2022;23:354–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang T, Ma Z, Liu L, Sun J, Tang H, Zhang B, et al. DDX39 promotes hepatocellular carcinoma growth and metastasis through activating Wnt/beta-catenin pathway. Cell Death Dis. 2018;9:675.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuramitsu Y, Suenaga S, Wang Y, Tokuda K, Kitagawa T, Tanaka T, et al. Up-regulation of DDX39 in human pancreatic cancer cells with acquired gemcitabine resistance compared to gemcitabine-sensitive parental cells. Anticancer Res. 2013;33:3133–6.

    CAS  PubMed  Google Scholar 

  36. Liu N, Wu Z, Chen A, Wang Y, Cai D, Zheng J, et al. SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26. Cell Death Dis. 2019;10:667.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol. 2016;17:426–38.

    Article  CAS  PubMed  Google Scholar 

  38. Kouyama Y, Masuda T, Fujii A, Ogawa Y, Sato K, Tobo T, et al. Oncogenic splicing abnormalities induced by DEAD-Box Helicase 56 amplification in colorectal cancer. Cancer Sci. 2019;110:3132–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-Box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress. Plant Physiol. 2020;182:255–71.

    Article  CAS  PubMed  Google Scholar 

  40. Hirano M, Galarza-Munoz G, Nagasawa C, Schott G, Wang L, Antonia AL, et al. The RNA helicase DDX39B activates FOXP3 RNA splicing to control T regulatory cell fate. Elife. 2023;12.

  41. Brooks DL, Schwab LP, 26 Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ammothumkandy A, Maliekal TT, Bose MV, Rajkumar T, Shirley S, Thejaswini B, et al. CD66 and CD49f expressing cells are associated with distinct neoplastic phenotypes and progression in human cervical cancer. Eur J Cancer. 2016;60:166–78.

    Article  CAS  PubMed  Google Scholar 

  43. Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, et al. N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 2019;47:195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gambelli A, Nespolo A, Rampioni Vinciguerra GL, Pivetta E, Pellarin I, Nicoloso MS, et al. Platinum-induced upregulation of ITGA6 promotes chemoresistance and spreading in ovarian cancer. EMBO Mol Med. 2024;16:1162–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Asada T, Nakahata S, Fauzi YR, Ichikawa T, Inoue K, Shibata N, et al. Integrin alpha6A (ITGA6A)-type splice variant in extracellular vesicles has a potential as a novel marker of the early recurrence of pancreatic cancer. Anticancer Res. 2022;42:1763–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank American Journal Experts (AJE) for English language editing.

Funding

This work was supported by Natural Science Foundation of Shandong Province (ZR2023MH183, ZR2022QH074), the Tai-Shan Scholar Program of Shandong Province (No. ts20070743).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YW L. Methodology: YW L. Acquisition of data: YW L, ZC, YL. Analysis and interpretation of data: YW L, ZC, YL. Administrative, technical, or material support: YW L, ZC, YL, YG, HX, QG, YP, LG, YD, CY, SY, NY. Study supervision: YW L, BK. Writing, review, and/or revision of the manuscript: YW L Final approval: All authors.

Corresponding authors

Correspondence to Yingwei Li or Beihua Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods in this study were performed in accordance with the relevant guidelines and regulations. Ethics Committee at Qilu Hospital of Shandong University approved the study (KYLL-202407-059-1). The Nude mouse xenograft assay and PDX model assay were approved by the Shandong University Animal Care and Use Committee (24045). Informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Z., Gao, Y. et al. SNRPB-mediated regulation of DDX39A splicing promotes ovarian cancer progression by regulating α6 integrin subunit expression. Oncogene 44, 2170–2185 (2025). https://doi.org/10.1038/s41388-025-03386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-025-03386-0

Search

Quick links