Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRMT5 K240lac confers ferroptosis resistance via ALKBH5/SLC7A11 axis in colorectal cancer

Abstract

Ferroptosis is a newly discovered type of regulated cell death, characterized by the iron-dependent accumulation of lipid reactive oxygen species, which has been implicated in a number of human diseases. However, the regulatory mechanisms underlying ferroptosis in colorectal cancer (CRC) remain unclear. In this study, we unravel the pivotal role of PRMT5 in the progression of CRC by promoting ferroptosis resistance. Mechanistically, PRMT5 directly inhibits the transcription of m6A demethylase ALKBH5 via histone modifications (H4R3me2s and H3R8me2s), bolstering SLC7A11 mRNA stability and expression, thereby aggravating CRC progression through attenuating ferroptosis. Particularly, our work identifies PRMT5 as a novel lactylation substrate at lysine 240 (PRMT5 K240lac), crucial for sustaining CRC ferroptosis resistance by shaping the ALKBH5/SLC7A11 axis, while mutation disrupting these effects. Overall, our work underscores the significance of PRMT5 K240lac in conferring ferroptosis resistance in CRC, proposing targeted intervention along the PRMT5 K240lac/ALKBH5/SLC7A11 axis as an innovative therapeutic approach in CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRMT5 is required for the proliferation of CRC cells and negatively associated with ferroptosis in CRC.
Fig. 2: Knockdown of PRMT5 promotes ferroptosis in vitro and in vivo.
Fig. 3: PRMT5 facilitates the expression of SLC7A11 in CRC cells.
Fig. 4: PRMT5 upregulates the expression of SLC7A11 through transcriptionally inhibiting the expression of ALKBH5.
Fig. 5: PRMT5 is lactylated at K240 in CRC.
Fig. 6: K240lac is essential for PRMT5 to modulate ALKBH5/SLC7A11 axis.
Fig. 7: PRMT5 K240R sensitizes CRC cells to ferroptosis.

Similar content being viewed by others

Data availability

The datasets used in the current study are available from the corresponding author on reasonable request.

References

  1. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FX, et al. Ferroptosis and its potential role in metabolic diseases: a curse or revitalization?. Front Cell Dev Biol. 2021;9:701788.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Du L, Wu Y, Fan Z, Li Y, Guo X, Fang Z, et al. The role of ferroptosis in nervous system disorders. J Integr Neurosci. 2023;22:19.

    Article  PubMed  Google Scholar 

  5. Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20:7–23.

    Article  PubMed  Google Scholar 

  6. Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury. Cell Death Dis. 2022;13:182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B. Ferroptosis and traumatic brain injury. Brain Res Bull. 2021;172:212–19.

    Article  CAS  PubMed  Google Scholar 

  8. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.

    Article  CAS  PubMed  Google Scholar 

  9. Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du G, Zhang Q, Huang X, Wang Y. Molecular mechanism of ferroptosis and its role in the occurrence and treatment of diabetes. Front Genet. 2022;13:1018829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Wei Z, Pan K, Li J, Chen Q. The function and mechanism of ferroptosis in cancer. Apoptosis. 2020;25:786–98.

    Article  CAS  PubMed  Google Scholar 

  12. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31:e1904197.

    Article  PubMed  Google Scholar 

  14. Smith LM, Kelleher NL. Consortium for Top Down P. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10:186–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nussinov R, Tsai CJ, Xin F, Radivojac P. Allosteric post-translational modification codes. Trends Biochem Sci. 2012;37:447–55.

    Article  CAS  PubMed  Google Scholar 

  16. Hann SR. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin Cancer Biol. 2006;16:288–302.

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Xu X. Post-translational modifications of the mini-chromosome maintenance proteins in DNA replication. Genes. 2019;10:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chatterjee S, Senapati P, Kundu TK. Post-translational modifications of lysine in DNA-damage repair. Essays Biochem. 2012;52:93–111.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JM, Hammaren HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023;14:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sales-Gil R, Vagnarelli P. How HP1 post-translational modifications regulate heterochromatin formation and maintenance. Cells. 2020;9:1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kretova M, Selicky T, Cipakova I, Cipak L. Regulation of pre-mRNA splicing: indispensable role of post-translational modifications of splicing factors. Life (Basel). 2023;13:604.

    CAS  PubMed  Google Scholar 

  22. Cuijpers SAG, Vertegaal ACO. Guiding mitotic progression by crosstalk between post-translational modifications. Trends Biochem Sci. 2018;43:251–68.

    Article  CAS  PubMed  Google Scholar 

  23. Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65:8–24.

    Article  CAS  PubMed  Google Scholar 

  24. Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci. 2011;36:633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci. 2015;72:2041–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim H, Ronai ZA. PRMT5 function and targeting in cancer. Cell Stress. 2020;4:199–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother. 2022;145:112368.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie Y, Hu H, Liu M, Zhou T, Cheng X, Huang W, et al. The role and mechanism of histone lactylation in health and diseases. Front Genet. 2022;13:949252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol. 2022;10:972020.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 2023;24:87.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Motolani A, Martin M, Sun M, Lu T. The structure and functions of PRMT5 in human diseases. Life (Basel). 2021;11:1074.

    CAS  PubMed  Google Scholar 

  33. Yan H, Talty R, Johnson CH. Targeting ferroptosis to treat colorectal cancer. Trends Cell Biol. 2023;33:185–88.

    Article  CAS  PubMed  Google Scholar 

  34. Murakami S, Jaffrey SR. Hidden codes in mRNA: control of gene expression by m(6)A. Mol Cell. 2022;82:2236–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. Mol Biomed. 2023;4:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xin Q, Wang H, Li Q, Liu S, Qu K, Liu C, et al. Lactylation: a passing fad or the future of posttranslational modification. Inflammation. 2022;45:1419–29.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Yao B, Gui T, Guo C, Wu X, Li J, et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics. 2020;10:4437–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Li R, Hou N, Zhang J, Wang T, Fan P, et al. PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis. J Immunother Cancer. 2023;11:e006890.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fan Y, Wang Y, Dan W, Zhang Y, Nie L, Ma Z, et al. PRMT5-mediated arginine methylation stabilizes GPX4 to suppress ferroptosis in cancer. Nat Cell Biol. 2025;27:641–53.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Wang Z, Han L, Guo Z, Yan B, Guo L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther. 2022;30:2603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meng S, Liu H, Xu J, Deng C, Qian X, Chu S, et al. PRMT5-mediated ALKBH5 methylation promotes colorectal cancer immune evasion via increasing CD276 expression. Research (Wash D C). 2025;8:0549.

    CAS  PubMed  Google Scholar 

  42. Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022;15:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, et al. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 2023;165:445–62.

    Article  CAS  PubMed  Google Scholar 

  44. Shen D, Lin J, Xie Y, Zhuang Z, Xu G, Peng S, et al. RNA demethylase ALKBH5 promotes colorectal cancer progression by posttranscriptional activation of RAB5A in an m6A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo J, Yu H, Yuan Z, Ye T, Hu B. ALKBH5 decreases SLC7A11 expression by erasing m6A modification and promotes the ferroptosis of colorectal cancer cells. Clin Transl Oncol. 2023;25:2265–76.

    Article  CAS  PubMed  Google Scholar 

  46. Huang Z, Lin G, Hong Y, Weng L, Zhu K, Zhuang W. High expression of AlkB homolog 5 suppresses the progression of non-small cell lung cancer by facilitating ferroptosis through m6A demethylation of SLC7A11. Environ Toxicol. 2024;39:4035–46.

    Article  CAS  PubMed  Google Scholar 

  47. Yang P, Wang Q, Liu A, Zhu J, Feng J. ALKBH5 holds prognostic values and inhibits the metastasis of colon cancer. Pathol Oncol Res. 2020;26:1615–23.

    Article  CAS  PubMed  Google Scholar 

  48. Ge J, Liu SL, Zheng JX, Shi Y, Shao Y, Duan YJ, et al. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8(+) T cell infiltration in colorectal cancer. Transl Oncol. 2023;34:101683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z, Wang L, Zhao L, Wang Q, Yang C, Zhang M, et al. N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation. Clin Transl Med. 2022;12:e940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu X, Dai M, Li J, Cai J, Zuo Z, Ni S, et al. m(6)A demethylase ALKBH5 inhibits cell proliferation and the metastasis of colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis. Am J Transl Res. 2021;13:11209–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022;34:634–48.e6.

    Article  CAS  PubMed  Google Scholar 

  52. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lv X, Lv Y, Dai X. Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 2023;25:e7.

    Article  CAS  PubMed  Google Scholar 

  54. Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, et al. Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 2023;14:6523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 2024;187:294–311.e21.

    Article  CAS  PubMed  Google Scholar 

  56. Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, et al. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 2024;121:e2314128121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng Z, Huang H, Li M, Chen Y. Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience. 2024;27:108645.

    Article  CAS  PubMed  Google Scholar 

  58. Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li H, Sun L, Gao P, Hu H. Lactylation in cancer: current understanding and challenges. Cancer Cell. 2024;42:1803–07.

    Article  CAS  PubMed  Google Scholar 

  60. Shen Y, Zhao P, Dong K, Wang J, Li H, Li M, et al. Tadalafil increases the antitumor activity of 5-FU through inhibiting PRMT5-mediated glycolysis and cell proliferation in colorectal cancer. Cancer Metab. 2022;10:22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Talent Construction Fund Research Project of Jiangsu Province Geriatric Hospital (Grant No. IR2024103), the Research Incubation Startup Fund of Jiangsu Province Geriatric Hospital (Grant No. FHQD202502), the Natural Science Foundation of Jiangsu Province (Grant No. BK202402101, BK20231261, BK20241997, BK20241998), the Jiangsu Primary Research & Development Plan (Grant No. BE2021747) and the Medical scientific research project of Jiangsu Provincial Commission of Health (Grant No. H2023048).

Author information

Authors and Affiliations

Authors

Contributions

ML, QD, LY, and SG provided the study concept and design. BY, ZY, and MX wrote the manuscript. SQ, BF, MX, YQ, LM, YJ, FH, JZ, MX, and JH performed the experiments. QZ and XZ interpreted and analyzed the data. YW and WX collected the patients’ samples. YJ, SG, BY, and ML provided financial support. ML, QD, LY, and SG is responsible for the overall content as the guarantor and supervised the project. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Ming Liu, Qiantong Dong, Liu Yang or Shouyong Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written informed consent was obtained from all patients and the study was approved by the Ethics Committee of Jiangsu Province Geriatric Hospital. Animal experiments were performed according to the Health Guide for the Care and Use of Laboratory Animals approved by the Animal Experimental Research Ethics Committee of Jiangsu Province Geriatric Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Feng, B., Xing, M. et al. PRMT5 K240lac confers ferroptosis resistance via ALKBH5/SLC7A11 axis in colorectal cancer. Oncogene (2025). https://doi.org/10.1038/s41388-025-03457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03457-2

Search

Quick links