Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting TFAM downregulation mediated mtDNA-NLRP3 pathway suppresses TAM infiltration and HCC progression

Abstract

The infiltration of TAMs mediates an immunosuppressive tumor microenvironment, which plays a crucial role in the malignant progression of HCC. TFAM is a key molecule that regulates mtDNA replication and transcription, and its expression frequently downregulated in various tumors, including HCC. Our previous study indicated that the downregulation of TFAM triggers mtDNA stress, thereby inducing autophagy and promoting ESCC survival through the STING pathway. However, it remains unclear whether cytosolic mtDNA stress, mediated by TFAM downregulation, is implicated in microenvironment regulation, particularly in the infiltration of TAMs in HCC. In this study, we found that TFAM expression was significantly decreased and correlated with CD163 expression in HCC tissues. The downregulated expression of TFAM in HCC cells contributed to TAM infiltration. Mechanistically, the downregulation of TFAM induced cytosolic mtDNA stress, which activated the NLRP3 inflammasome and promoted the expression of IL-18 and IL-1β in HCC cells, thereby inducing macrophage recruitment and M2 polarization. Depleting cytosolic mtDNA using DNase I or blocking NLRP3 inflammasome activation with an NLRP3 antagonist in HCC cells with TFAM downregulation significantly suppresses the infiltration of M2-TAMs. Moreover, blocking the mtDNA-NLRP3 pathway significantly inhibited TAM infiltration and orthotopic mouse HCC model progression. Taken together, our results reveal a novel mechanism by which cytosolic mtDNA stress mediates TAM infiltration in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Downregulation of TFAM is associated with poor prognosis and macrophage infiltration in HCC.
Fig. 2: Downregulated TFAM significantly contributes to the recruitment and polarization of macrophages.
Fig. 3: Downregulated TFAM crucially promotes mtDNA stress in HCC cells.
Fig. 4: Blocking mtDNA stress in HCC cells inhibits TAMs recruitment and polarization.
Fig. 5: Downregulated TFAM mediates NLRP3 inflammasome activation to promote macrophage infiltration.
Fig. 6: Blocking mtDNA stress inhibits NLRP3 inflammasome activation in HCC cells.
Fig. 7: Targeted blockade of the mtDNA-NLRP3 pathway inhibits TAM infiltration and HCC progression.
Fig. 8: Schematic depicting of this article.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author Dengke Bao ([email protected]).

Code availability

The data that support the findings of this study are available on request from the corresponding author Dengke Bao ([email protected]).

References

  1. Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol. 2021;14:181. https://doi.org/10.1186/s13045-021-01198-9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol. 2017;8:828. https://doi.org/10.3389/fimmu.2017.00828.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179:829–845.e820. https://doi.org/10.1016/j.cell.2019.10.003.

    Article  PubMed  Google Scholar 

  4. Chew V, Lai L, Pan L, Lim CJ, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci USA. 2017;114:E5900–E5909. https://doi.org/10.1073/pnas.1706559114.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou J, Wang W, Li Q. Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. J Exp Clin Cancer Res. 2021;40:73. https://doi.org/10.1186/s13046-021-01873-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu YT, Mao ZW, Ding Y, Wang WL. Macrophages as targets in hepatocellular carcinoma therapy. Mol Cancer Ther. 2024;23:780–90. https://doi.org/10.1158/1535-7163.MCT-23-0660.

    Article  PubMed  Google Scholar 

  7. Boulton DP, Caino MC. Mitochondrial fission and fusion in tumor progression to metastasis. Front Cell Dev Biol. 2022;10:849962. https://doi.org/10.3389/fcell.2022.849962.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, et al. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41. https://doi.org/10.1210/endrev/bnaa005.

  9. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555–66. https://doi.org/10.1016/j.cell.2016.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–17. https://doi.org/10.1016/j.immuni.2015.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang Y, Zhou JH, Zhang H, Canfran-Duque A, Singh AK, Perry RJ, et al. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J Clin Invest 2022; 132. https://doi.org/10.1172/JCI148852.

  12. Jentho E, Weis S. DAMPs and innate immune training. Front Immunol. 2021;12:699563. https://doi.org/10.3389/fimmu.2021.699563.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, et al. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene. 2019;38:5007–20. https://doi.org/10.1038/s41388-019-0772-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 2012;1819:921–9. https://doi.org/10.1016/j.bbagrm.2012.03.002.

    Article  PubMed  Google Scholar 

  15. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7. https://doi.org/10.1038/nature14156.

    Article  PubMed  PubMed Central  Google Scholar 

  16. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17:363–75. https://doi.org/10.1038/nri.2017.21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo S, et al. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. EMBO J. 2022;41:e110324. https://doi.org/10.15252/embj.2021110324.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Yang Q, Chen H, Yang X, Han J, Yao X, et al. TFAM downregulation promotes autophagy and ESCC survival through mtDNA stress-mediated STING pathway. Oncogene. 2022;41:3735–46. https://doi.org/10.1038/s41388-022-02365-z.

    Article  PubMed  Google Scholar 

  19. Li Y, Chen H, Yang Q, Wan L, Zhao J, Wu Y, et al. Increased Drp1 promotes autophagy and ESCC progression by mtDNA stress mediated cGAS-STING pathway. J Exp Clin Cancer Res. 2022;41:76 https://doi.org/10.1186/s13046-022-02262-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brinkkoetter PT, Bork T, Salou S, Liang W, Mizi A, Ozel C, et al. Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Rep. 2019;27:1551–1566.e1555. https://doi.org/10.1016/j.celrep.2019.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–63. https://doi.org/10.7150/thno.50905.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu H, Chen J, Chen P, Li W, Shao J, Hong S, et al. Costunolide covalently targets NACHT ___domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases. Acta Pharm Sin B. 2023;13:678–93. https://doi.org/10.1016/j.apsb.2022.09.014.

    Article  PubMed  Google Scholar 

  23. Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 Inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci. 2022;14:879021. https://doi.org/10.3389/fnagi.2022.879021.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Lopez E, Zhong Z, Stubelius A, Sweeney SR, Booshehri LM, Antonucci L, et al. Choline Uptake and Metabolism Modulate Macrophage IL-1beta and IL-18 Production. Cell Metab. 2019;29:1350–1362.e1357. https://doi.org/10.1016/j.cmet.2019.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604. https://doi.org/10.1038/s41575-019-0186-y.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang S, He X, Zhao J, Wang D, Guo S, Gao T, et al. Mitochondrial transcription factor A plays opposite roles in the initiation and progression of colitis-associated cancer. Cancer Commun. 2021;41:695–714. https://doi.org/10.1002/cac2.12184.

    Article  Google Scholar 

  28. Si L, Fu J, Liu W, Hayashi T, Nie Y, Mizuno K, et al. Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol Cell Biochem. 2020;463:189–201. https://doi.org/10.1007/s11010-019-03640-6.

    Article  PubMed  Google Scholar 

  29. Chang TC, Lee HT, Pan SC, Cho SH, Cheng C, Ou LH, et al. Metabolic Reprogramming in response to alterations of mitochondrial DNA and mitochondrial dysfunction in gastric adenocarcinoma. Int J Mol Sci 2022; 23. https://doi.org/10.3390/ijms23031857.

  30. Wu Q, Tsai HI, Zhu H, Wang D. The entanglement between mitochondrial DNA and tumor metastasis. Cancers 2022;14. https://doi.org/10.3390/cancers14081862.

  31. Hsieh YT, Tu HF, Yang MH, Chen YF, Lan XY, Huang CL, et al. Mitochondrial genome and its regulator TFAM modulates head and neck tumourigenesis through intracellular metabolic reprogramming and activation of oncogenic effectors. Cell Death Dis. 2021;12:961. https://doi.org/10.1038/s41419-021-04255-w.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao X, Zhu B, Wu Y, Li C, Zhou X, Tang J, et al. TFAM-Dependent mitochondrial metabolism is required for alveolar macrophage maintenance and homeostasis. J Immunol. 2022;208:1456–66. https://doi.org/10.4049/jimmunol.2100741.

    Article  PubMed  Google Scholar 

  33. Li Z, Li X, Lu Y, Zhu X, Zheng W, Chen K, et al. Novel Photo-STING Agonists Delivered by Erythrocyte Efferocytosis-Mimicking Pattern to Repolarize Tumor-Associated Macrophages for Boosting Anticancer Immunotherapy. Adv Mater. 2024;36:e2410937. https://doi.org/10.1002/adma.202410937.

    Article  PubMed  Google Scholar 

  34. Liu J, Xiang J, Jin C, Ye L, Wang L, Gao Y, et al. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J Nanobiotechnol. 2023;21:78. https://doi.org/10.1186/s12951-023-01835-0.

    Article  Google Scholar 

  35. Missiroli S, Perrone M, Boncompagni C, Borghi C, Campagnaro A, Marchetti F, et al. Targeting the NLRP3 inflammasome as a new therapeutic option for overcoming cancer. Cancers 2021;13. https://doi.org/10.3390/cancers13102297.

  36. Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharm. 2023;217:115861. https://doi.org/10.1016/j.bcp.2023.115861.

    Article  PubMed  Google Scholar 

  37. Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55:1370–1385.e1378. https://doi.org/10.1016/j.immuni.2022.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell. 2020;183:636–649.e618. https://doi.org/10.1016/j.cell.2020.09.020.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang T, Liu E, Li Z, Yan C, Zhang X, Guan J, et al. SIRT1-Rab7 axis attenuates NLRP3 and STING activation through late endosomal-dependent mitophagy during sepsis-induced acute lung injury. Int J Surg. 2024;110:2649–68. https://doi.org/10.1097/JS9.0000000000001215.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Laube BL, Auci RM, Shields DE, Christiansen DH, Lucas MK, Fuchs HJ, et al. Effect of rhDNase on airflow obstruction and mucociliary clearance in cystic fibrosis. Am J Respir Crit Care Med. 1996;153:752–60. https://doi.org/10.1164/ajrccm.153.2.8564129.

    Article  PubMed  Google Scholar 

  41. Guichard MJ, Patil HP, Koussoroplis SJ, Wattiez R, Leal T, Vanbever R. Production and characterization of a PEGylated derivative of recombinant human deoxyribonuclease I for cystic fibrosis therapy. Int J Pharm. 2017;524:159–67. https://doi.org/10.1016/j.ijpharm.2017.03.057.

    Article  PubMed  Google Scholar 

  42. Huang W, Wen L, Tian H, Jiang J, Liu M, Ye Y, et al. Self-Propelled Proteomotors with Active Cell-Free mtDNA clearance for enhanced therapy of sepsis-associated acute lung injury. Adv Sci. 2023;10:e2301635. https://doi.org/10.1002/advs.202301635.

    Article  Google Scholar 

  43. Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, et al. DNA of neutrophil extracellular traps promote NF-kappaB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther. 2024;9:163. https://doi.org/10.1038/s41392-024-01881-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 82373070 and 82002511). The Youth Promotion Project of Zhongzhou Laboratory for Integrative Biology (grant number 2024TS0101 and 2024TS0106). Postdoctoral Fellowship Program of CPSF (grant number GZC20230692), Excellent Youth Fund Project of Henan Natural Science Foundation (grant number 232300421043), Scientific and Technological Project of Henan Province in China (grant number SBGJ202302086 and 242102311046) and young backbone teachers of colleges and universities in Henan province (grant number 2021GGJS027), and Program for Central Plains Youth Top Talent for DKB, and Henan Postdoctoral Scientific Research Program (HN2025014).

Author information

Authors and Affiliations

Authors

Contributions

DKB and JZ performed the experiments and data analysis. JZ and XJY wrote this article. This article was revised by LXW, QY. HLL and MMC conceived and designed the study. ZXJ, LXQ, JXC., CHF, SWB, CYZ and RW helped with the data analysis. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Qi Yang, Lixin Wan or Dengke Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cui, M., Yao, X. et al. Targeting TFAM downregulation mediated mtDNA-NLRP3 pathway suppresses TAM infiltration and HCC progression. Oncogene (2025). https://doi.org/10.1038/s41388-025-03467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03467-0

Search

Quick links