Fig. 5: Intestinal sub-epithelial myofibroblasts (IMFs) act as a crucial extrinsic niche factor in small intestinal organoid architecture/organisation. | Oncogenesis

Fig. 5: Intestinal sub-epithelial myofibroblasts (IMFs) act as a crucial extrinsic niche factor in small intestinal organoid architecture/organisation.

From: An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance

Fig. 5

a Schematic shows the fbxw7fl/fl before and after Cre recombination to generate fbxw7 gut-specific inactivation (fbxw7ΔG) mice. Lower panels: ISH for fbxw7 and olfm4 mRNA on intestinal sections of 3-week fbxw7fl/fl (left) and fbxw7ΔG (right) mice. Scale bars, 50 μm. b Morphological representative images of a 7-day time course of small intestinal organoid growth from a single crypt isolated from fbxw7fl/fl (left panels) and fbxw7ΔG mice (right panels). Dashed lines indicate erupted epithelial cells from the fbxw7ΔG crypts. Scale bars, 25 μm. c–f Graphs report the percentage of different morphologies found within a population of fbxw7fl/fl, fbxw7ΔG, EpΔG:IMFfl/fl (fbxw7ΔG organoids seeded on a layer of wild-type intestinal myofibroblasts) and EpΔG:IMFΔG (fbxw7ΔG organoids seeded on a layer of fbxw7ΔG-derived myofibroblasts) organoids cultured for 1 week. Organoids were classified as enterospheres (spherical structures), enteroids (lumens and budding development with multilobulated structures), microadenoma-like structures and spheres (organoids with 1–4 small buddings). Data are from four mice per genotype with the same sex and show mean% changes over the total number of organoids in co-cultures of crypt epithelial cells and myofibroblasts (Ep:IMF), compared with a single culture of crypt epithelial cells (Ep) ± standard error of the mean (SEM) for n = 4 parallel wells/condition. Error bars represent SEM; (*) value Epfl/fl vs. EpΔG and (o) value EpΔG:IMFfl/fl vs. EpΔG:IMFΔG, ***P or oooP ≤ 0.001; **P or ooP ≤ 0.01; *P or oP ≤ 0.05, as determined by Student’s t test

Back to article page