Yao et al. Oncogenesis (2020)9:17

httpSI//dOi.Ol’g/1 0.1038/541389-020-0198-z O n cog enes i S

ARTICLE Open Access

MFAP2 is overexpressed in gastric cancer and
promotes motility via the MFAP2/integrin
a5B31/FAK/ERK pathway

Li-wen Yao'”, Lian-lian Wu'?, Li-hui Zhang'?, Wei Zhou'? Lu Wu'?, Ke He*, Jia-cai Ren’, Yun-chao Deng'?,
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Yan-ning Yang® and Hong-gang Yu'?

Abstract

Gastric cancer (GQ) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a
novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we
found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples.
Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition
of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the
activation of focal adhesion process via modulating [TGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2
activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is
a novel target of microRNA-29, and miR-29/MFAP2/integrin a531/FAK/ERK1/2 could be an important oncogenic pathway in
GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/

integrin a5B1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.

Introduction

Gastric cancer (GC) is one of the most common and
lethal malignant cancer throughout the world, particularly
in Eastern Asian and South American countries’. Surgery
is the optimal strategy of treating patients with GC;
unfortunately, the application of surgical resection in
patients with GC is limited, as most patients are diag-
nosed at an advanced stage of the disease®. What is more,
many cases of GC are also not sensitive to chemotherapy
and radiotherapy, making the situation more severe”.
Recent years have witnessed the great progress of targeted
cancer therapies; however, for GC patients, only
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trastuzumab, a monoclonal antibody against human epi-
dermal growth factor receptor 2, and ramucirumab, a
monoclonal antibody against vascular endothelial growth
factor receptor 2, proved to have certain therapeutic
effects and are widely applied in clinic**. Current treat-
ment regimens for GC are still not adequate.
Researchers are trying to clarify the biological
mechanisms underlying tumorigenesis and progression of
GC, aiming to provide novel clues to fight against this
fatal disease. With the rapid development of high-
throughput detection techniques, gene expression data
are accumulating rapidly in public repositories and a
massive amount of differentially expressed genes (DEGs)
between GC and normal tissue has been identified in
several studies®®. Many DEGs have been validated as
oncogenes or tumor suppressors, which effect different
malignant phenotypes of GC including proliferation,
angiogenesis, metastasis, and chemoresistance via acti-
vating or inactivating multiple downstream signaling
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pathways®™®. But owing to different sample resources,
experimental techniques, and bioinformatics algorithms,
the results among these studies are greatly divergent, and
there is still no widely accepted factor dominating the
malignant transformation and progression of GC.

Integrative reanalysis of independent transcriptomic
data may indicate common and remarkable changes
during GC progression. In this study, by integrative ana-
lysis of datasets from either Gene Expression Omnibus
(GEO) or The Cancer Genome Atlas (TCGA) databases,
we successfully unveiled a set of DEGs that were invari-
ably dysregulated in each cohort. Intriguingly, the func-
tions of intersecting DEGs were found to significantly
focus on the biological processes, such as extracellular
space, extracellular matrix (ECM) organization, extra-
cellular exosome, collagen catabolic process, and
ECM-receptor interaction. ECM provides both the
structure and signals that modulate biological behavior of
cells, and recent studies have established the importance
of the remodeling of ECM in cancer progression'®"". Our
results implied that matrix remodeling was a hallmark of
GC, which was probably underestimated in the past.

To further verify the crucial role of matrix remodeling
in GC progression, we conducted survival analysis and
obtained 14 genes associated with prognosis of GC
patients, including SPARC, MFAP2, SERPINEI, LOX,
PDGFRB, OLFML2B, VCAN, COLA18Al, SPON2,
COL4A2, CHD11, NRP1, NREP, and COL4A5. Con-
sistent with our expectations, most of them were impor-
tant components of ECM or important modulators of
matrix remodeling. This provided further evidence
implying the crucial role of ECM in GC progression.

Among the 14 genes, we were particularly interested in
MFAP2 (the microfibrillar-associated protein 2), which is
also named microfibril-associated glycoprotein 1 (MAGP1).
It is a 183-amino acid protein composed of two domains: a
proline- and glutamine-enriched residues in amino terminal
half and a 54-amino acid region in carboxy terminal half that
targets itself to ECM'>"3, Its extracellular form binds to
fibrillin, collagen VI, tropoelastin, decorin, and biglycan'?,
and the intracellular form of MFAP2 upregulated the
expression of downstream genes linked to cell adhesion,
motility, and matrix remodeling'®. Recently, the function of
MFAP2 in metabolic disease has attracted a lot of attention.
Previous studies demonstrated that, in adipose tissue,
MFAP?2 had high affinity for members of the transforming
growth factor (TGF)-p superfamily, and in the absence of
MEFAP?2, there was an increase in basal TGF-B activity'>'.
However, its role in cancer biology is still obscure. In this
study, we validated that MFAP2 was upregulated in GC
tissue, and it was implicated in the malignant behavior of
GC cells, such as proliferation, migration, and invasion. We
also demonstrated that it activated focal adhesion kinase
(FAK), paxillin, and extracellular signal-regulated kinase 1/2
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(ERK1/2) through the MFAP2/integrin o531/FAK/ERK1/2
pathway. Furthermore, we explored the mechanisms of its
expression dysregulation in GC. Loss of microRNA29 (miR-
29) is known to be a mechanism of fibrosis and we found
that MFAP2 was a target of miRNA-29 family, and its
aberrant high expression was probably due to the absence or
inhibition of miR-29 family.

In general, we reveal a set of GC-related genes that are
potential diagnostic biomarkers and therapy targets. We
also demonstrate that the novel oncogene MFAP2 endows
cancer cells by activating integrin signaling. Finally, we
provide evidence that miR-29 family members have
potential to inhibit MFAP2 and at least partly reverse the
aberrant matrix status of GC.

Materials and methods
Study strategy

The workflow of data mining and the number of can-
didate genes remaining at each step are shown in Fig. 1.

Patients and gene expression data

In this study, five cohorts of patients with GC
(GSE29272, GSE79973, GSE62254 and GSE15459 and
TCGA) were used for identifying and validating
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Fig. 1 Workflow of data mining. Gastric cancer (GO)-related RNA
sequence data were used to screen differentially expressed genes
(DEGs) between GC and normal gastric tissues. After taking
intersection from different cohorts, DEGs were further screened to
identify prognosis-associated genes. Number of candidate genes
remaining at each step is shown.
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prognostic biomarkers. Description of these cohorts is
presented in Supporting Information.

Identification of DEGs

DEGs between matched GC and adjacent normal gas-
tric tissues were identified using TwoClassDif'”"'®. Briefly,
we first filtered DEGs with a fold-change (Tumor/Nor-
mal) of >1.5 or <0.67. Next, we confirmed the DEGs with
the random variance model-modified ¢ test to reduce
statistical errors. Venn diagrams were drawn by online
BioVenn website (http://www.biovenn.nl/index.php).

Functional annotation

DAVID database and Gene Ontology (GO) functional
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were used to explore the
potential biological function of intersecting DEGs from
different cohorts'®, P value < 0.01 and false discovery rate
(FDR) <0.25 were set as the cutoff criteria.

Identification of prognostic genes

Patients were classified as either high-expression (more
than the median expression level of DEGs) or low-
expression (less than the median expression level of
DEGs) groups according to the expression of intersecting
DEGs one by one. Univariate analyses of overall survival
(OS) were performed with two-sided log-rank test to
compare the differences between the two groups.

Kaplan—Meier plots were made using an online dataset
(http://www.kmplot.com)*® with the data of GSE15459
and GSE62254. The analysis was performed using both
disease-free survival (DFS) and OS information of
patients. The patients were split by median.

Lentivirus transfection

To knockdown the expression of MFAP2, we infected
AGS and HGC-27 cells with the MFAP2-short hairpin
RNA (shRNA) recombinant lentivirus (Genepharma,
Suzhou, China). Detailed protocol of lentivirus transfec-
tion is presented in Supporting Information.

Cell proliferation assay

MTT assay was performed using Thiazolyl Blue Tetra-
zolium Bromide (MTT, M2128, Sigma) following the
manufacturer’s recommendations. The cell viability was
detected using the multifunctional microplate reader at
490 nm with cells incubated for 2 h at 37 °C. The relative
absorbance value was normalized and compared to the
control group.

In vitro migration and invasion assays

In the migration assay, cells were plated into the upper
chamber of 8-mm-pore-size Transwell chambers (Corn-
ing, Corning, NY). Dulbecco's modified Eagle’s medium
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containing 10% fetal bovine serum was added into the
lower chamber. Then the chambers were incubated at
37°C for 48h. Cells in the upper chamber were then
removed, and the bottom surface of the membranes was
counted using 0.1% crystal violet dye. In the invasion
assay, matrigel (Clontech, Madison, WI) was used in the
Transwell chambers (Corning). Cell migration and inva-
sion were qualified by counting six random fields under a
microscope.

Immunofluorescence

AGS cells were grown to confluency on glass coverslips.
Cells were fixed with 3.7% paraformaldehyde in
phosphate-buffered saline for 20 min. Cells were per-
meabilized with 0.1% Triton X-100 for 5 min at 4 °C and
then blocked with 5% bovine serum albumin in TBST for
1h. Samples were incubated with primary antibodies
overnight for 4°C and then with appropriate secondary
antibodies. Samples were mounted onto slides with
mounting medium, and images were acquired using a
fluorescence microscope. Images were processed using
the Photoshop software (Adobe).

Luciferase assay

Cells were plated into 24-well plates and cotransfected
with 200 ng of psiCHECK-2 plasmids and 50 nmol/] of
miR-29a (or NC microRNA) for 48 h. Luciferase activ-
ities were then measured using Dual-Luciferase Repor-
ter Assay system (Promega, Madison, WI). Renilla
luciferase activity was normalized to firefly luciferase
activity.

In vivo assays

Animal protocols were approved by the Institutional
Animal Care and Use Committee of the Renmin Hospital
of Wuhan University. Nude mice (4—5-week old) were
raised in an specific pathogen-free environment at the
experimental animal center of the Renmin Hospital of
Wuhan University. Xenograft tumor growth models were
established by subcutaneous injection of MFAP2 knock-
down cells and NC cells (2 x 10° cells) into the right
dorsal flank. Tumor growth in the nude mice was
observed for 28 days. Tumor volume (V, cm®) was eval-
uated based on tumor length (L) and width (W) with the
following formula: V= 1/2 x L x W>. In order to test how
MFAP?2 affect tumor metastasis, we established metastatic
tumor model by giving intravenous tail vein injections of
1 x 10> MFAP2 knockdown cells to two groups of mice.
After 7 weeks, the mice were sacrificed, and the tumor
nodules formed on the lung and liver surfaces were
counted. The tumors were embedded in paraffin for fur-
ther study. All animal studies were conducted with the
approval of the Renmin Hospital of Wuhan University
and Use Committee.
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clustering, 1352, 2845, and 3453 DEGs were identified from the expression profile datasets GSE29272 (n = 134), GSE79973 (n = 10), and TCGA (n =
374), respectively. d Taking the intersection of DEGs from the three datasets, 279 DEGs were extracted between GC and normal gastric tissues. e DEGs
in intersection were mapped onto the DAVID database and subjected to Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses. GO function and KEGG pathway analysis show that DEGs in intersection are significantly associated
with matrix remodeling process. f Using data with clinical information from GSE62254 (n = 300) and TCGA (n = 374), log-rank test was performed to
explore the prognostic value of the intersecting DEGs. Ninety-two and 29 genes were closely related to patients’ overall survival in GSE62254 and
TCGA, respectively. Taking the intersection of the two datasets, 14 prognostic biomarkers were obtained. g Among the 14 prognostic biomarkers, we
are most interested in microfibrillar-associated protein 2 (MFAP2). Kaplan-Meier survival for overall survival (OS) and disease-free survival (DFS) of GC
patients was performed. OS (P = 0.009) and DFS (P = 0.008) of GC patients in GSE15459 was significantly negatively associated with the expression of
MFAP2. h OS (P=0.027) and DFS (P=0.019) of GC patients in GSE62254 was significantly negatively associated with the expression of MFAP2.

Statistical analysis Results

The correlation between gene expression and the clin-
icopathologic features was analyzed by Chi-square test
using SPSS 20.0 (International Business Machines,
Armonk, NY, USA). Three independent experiments were
conducted in cellular studies, and results were analyzed
using the two-tailed, unpaired Student’s ¢ test. The mean
standard deviation (SD) of three independent experiments
was determined. Results were expressed as mean + S.E.M.
P <0.05 was considered statistically significant.
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Identification of DEGs in GC

From the expression profile datasets GSE29272 (n =
134), GSE79973 (n=10), and TCGA (n=374), we
extracted 1352, 2845, and 3453 DEGs, respectively.
Two-dimensional hierarchical clustering showed a
marked difference of expression modules of the DEGs
(Fig. 2a—c). Taking the intersection of DEGs from the
three datasets, we extracted 279 genes differently
expressed in the GC tissues compared to normal tissues,
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Table 1 P value of the 14 prognosis genes in survival
analysis.
Expression in GC Gene symbol P value of log-rank test
GSE62254 TCGA
Up SPARC 0.004 001
MFAP2 0.006 0.002
SERPINE1 0020 0001
LOX 0.044 0.002
PDGFRB 0.004 0.000
OLFML2B 0.004 0033
VCAN 0.039 0.000
Down COL18A1 <0001 0.001
SPON2 0023 0012
COL4A2 0.000 0013
CDHM 0.046 0043
NRP1 0.002 0009
NREP <0001 0006
COL4AS 0.000 0029

including 171 upregulated and 108 downregulated genes
(Fig. 2d, Table S1).

The DEGs in intersection are significantly associated with
matrix remodeling process

As shown in Fig. 2e, in GO functional analysis, biological
processes of the 279 DEGs were found to focus on the
extracellular space (P=1.12x10 '), ECM organization
(P=320x10"1%), extracellular exosome (P=7.84 x
1071, ECM (P=5.12x10"1), etc. In KEGG pathway
analysis, ECM—-receptor interaction (P = 3.56 x 10~”), pro-
tein digestion and absorption (P=3.03 x 10™°), cell cycle
(P=1.59 x 107°), and focal adhesion (P = 1.63 x 10™*) were
identified as significant pathways. Collectively, these results
implied that the dysregulation of ECM-related proteins are
common features in different cohorts.

Identification of prognostic genes among the DEGs
Using data with clinical information from GSE62254
(n=300) and TCGA (n=374), we further explored the
prognostic value of the 279 DEGs. As shown in Fig. 2f, 92
and 29 genes were closely related to patients’ OS in
GSE62254 and TCGA, respectively. Taking the intersec-
tion of the two datasets, 14 prognostic biomarkers were
obtained (Fig. 2f, Tables 1, 2). Most of the 14 genes were
closely related to matrix remodeling, which further sup-
ported that matrix remodeling is a crucial character of GC
progression. Among the 14 genes, most of them have
been reported in GC such as the well-known oncogenes
PDGFRB*!, VCAN??, and COL18A1%*, while there were
also four genes, MFAP2, OLFML2B, NREP, and COL4A5,
that have never been studied in GC. We are especially
interested in MFAP2. Kaplan—Meier analysis in cohorts
GSE15459 and GSE62254 showed that increased MFAP2
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expression revealed poor OS and DFS in GC patients (Fig.
2g, h). Clinical pathology analysis showed that the
expression level of MFAP2 was positively correlated with
venous invasion and local invasion (Table S2).

MFAP2 is upregulated in GC tissues and cell lines

To validate the aberrant expression of MFAP2 in GC,
we first observed the mRNA and protein levels of MFAP2
in 28 and 14 paired GC and adjacent tissues, respectively.
As expected, most of the GC tissues exhibited significant
upregulation of MFAP2 (Fig. 3a, b). Then we examined
the expression level of MFAP2 in different GC cell lines
and a gastric epithelial-derived cell line, GES-1. As shown
in Fig. 3c, GC cell lines expressed more MFAP2 than
GES-1. We also found that a previous study had verified
that MFAP2 was upregulated in GC among 168 paired
samples by immunohistochemistry**. These findings
demonstrated that MFAP2 was upregulated in GC,
implying the importance of them in GC pathogenesis.

MFAP2 modulates integrin-stimulated FAK activation in GC

In order to elucidate the molecular mechanisms by which
MEAP2 influences GC pathogenesis, RNA sequencing was
applied to assess the change of gene expression profile after
MFAP2 knockdown in AGS cell line. First, we built a stably
transfected MFAP2 knockdown cell line and validated it by
western and quantitative PCR (qPCR; Fig. 3d, e). As shown
by the sequencing, the control groups and MFAP2
knockdown groups were clearly distinguished by hier-
archical cluster analysis (Fig. 3f). Five hundred and eighty-
one DEGs were screened between sh-MFAP2 and control
groups. Pathway analysis indicated that genes regulating
focal adhesion were most significantly disrupted after
MFAP2 knockdown (enrichment score = 6.82, P = 3.28 x
10°, FDR = 0.005, Fig. 3g). Together with lamellipodia
formation and cell polarization, adhesion to ECM via spe-
cific focal adhesion points has long been regarded as an
essential step in cancer cell migration and invasion, which is
mediated by integrin signal®>”°. We noticed that both of
ITGB1 and ITGA5 were downregulated after MFAP2
knockdown in RNA sequencing (Fig. 3e). This result was
also validated by qPCR (Fig. 4e). Furthermore, western
blotting was used to examine the expression of the integrin-
stimulated FAK pathway in the MFAP2 Knockdown HGC-
27 and AGS cells. As we expected, the expression of ITGBI1,
ITGA5, FAK, PXN, ERK1/2, PFAK (Tyr397), PPXN
(Tyr118), and PERK1/2 (T202/Y204) were all prominently
downregulated in the MFAP2 knockdown cells compared
with the negative control (Fig. 4f). Based on the above
study, we further explored FAK-associated phenotype on
MFAP2 knockdown GC cell lines. As shown, HGC-27 and
AGS cells displayed a lower cell proliferation rate than
control cells after MFAP2 knockdown (Fig. 4b). What is
more important, knockdown of MFAP2 suppressed the
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Fig. 3 The RNA level of MFAP2 in clinical samples and sequencing analysis on MFAP2 knockdown cell lines. a Lysates from paired GC and
adjacent normal tissues were analyzed by gPCR for the detection of MFAP2. GAPDH was used as a loading control. Each value presents the mean +
S.EM. of three independent triplicate experiments. b Western blotting analysis of MFAP2 expression in 14 pairs of GC and adjacent tissues. ¢ Western
blotting analysis of MFAP2 expression in 4 GC cell lines, namely, HGC-27, SGC-7901, MGC-803, and AGS, and the normal gastric cell line GSE-1. GAPDH
was used as a loading control. d The knockdown of MFAP2 in cells was affirmed by western blot. e The knockdown of MFAP2 in cells was affirmed by
real-time RT-PCR. RNA sequencing using lllumina HumanHT-12 V4.0 expression beadchip was applied to assess the change of gene expression profile
after MFAP2 knockdown in AGS cell line. **P < 0.01 vs. NC. f Cluster analysis of gene expression profile after MFAP2 knockdown. Downregulated

(green) and upregulated genes (red) were identified. g Significantly changed pathways were identified based on Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway database using the Gene Cloud of Biotechnology Information.

wound healing (Fig. 4c, d), migration, and invasion rates of
AGS and HGC-27 cells (Fig. 4a). FAK is known as a crucial
oncogene and promotes cell motility, survival, and pro-
liferation, while in our current results, silencing of MFAP2
markedly inhibited FAK activation®’. To explore whether
the re-activation of FAK could rescue the effect of
MEFAP2 silencing, a widely used FAK activator fibronectin
was applied®®. As shown by immunostaining, the focal
adhesion formation was significantly activated or re-

Oncogenesis

activated by fibronectin (Fig. 4g). In the subsequent
wound healing assays, AGS cells treated with fibronectin
(10 pug/ml) showed stronger motility than the control group
even after MFAP2 knockdown (Fig. 4h). Based on these
results, we concluded that MFAP2 could possibly modulate
integrin-stimulated focal adhesion formation and then
work on motility and proliferation. Moreover, the effect of
silencing MFAP2 could be rescued by activating FAK and
paxillin.
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|_knockdown (wound width was quantified in eight fields per dish).

Fig. 4 MFAP2 modulates proliferation, migration, and invasion of GC cells through integrin-stimulated focal adhesion kinase activation.
a Cell migration was evaluated by cell wounding assay. b Wound width was quantified in eight fields per dish. ¢ Cell migration and invasion were
evaluated by migration and invasion assay. d The effect of MFAP2 knockdown on GC cell proliferation was determined by MTT assay. e Lysates from
MFAP2 knockdown and scramble control cells were analyzed by qPCR to validate the downregulation of ITGB1 and ITGAS after MFAP2 knockdown.
GAPDH was used as a loading control. Each value presents the mean + SEM. of three independent triplicate experiments. *P < 0.05 vs. blank, **P <
0.01 vs. blank, AP < 0.05 vs. control, AAP < 0.01 vs. control. f Western blotting analysis of MFAP2 knockdown and scramble control cells was performed
to validate the downregulation of ITGB1 and ITGAS and to explore the inhibition effect on FAK and paxillin after MFAP2 knockdown. g Fibronectin as
a FAK activator was pre-added into Control and shMFAP2 cells. Immunostaining showed focal adhesion formation (x100, Green: F-actin, Red:
pY118paxillin or pY397FAK, Blue: hoechst). h Wound healing assays showed that fibronectin significantly rescue AGS cells motility after MFAP2

Altering MFAP2 expression has profound effects on tumor
growth and metastasis in vivo

To better demonstrate influence of MFAP2 on pro-
liferation and motility of GC cells, we performed nude
mice xenograft assay and tail vein injection assay. For the
xenograft assay, nude mice were subcutaneously injected
with HGC-27 cells that had stably knocked down MFAP2
or empty vector as control. Tumor volumes were mea-
sured every 3 days after inoculation. Hematoxylin and
eosin (H&E) staining was used to confirm that the
nodules developed in mice were tumors (Table S3).
Remarkably, we observed that the tumors formed by
MFAP2 knockdown HGC-27 cells grew clearly slower
than those formed by control cells (Fig. 5a, b). To evaluate
the effects of MFAP2 on tumor metastasis in vivo, two
groups of eight mice each were injected intravenously into
the tail vein with MFAP2 knockdown or control cells,
respectively. After 6 weeks, the mice were sacrificed, and
the metastatic nodules in the lung and liver surfaces were
counted. A significantly fewer number of metastatic
nodules were induced at the surface of the lungs and livers
of mice injected with the MFAP2 knocked down cells
than in those with the control cells (Fig. 5f, g). H&E
staining confirmed that the nodules on the surfaces of
mice lungs and livers were metastatic tumors (Fig. 5d, e).

Extracellular MFAP2 also modulates GC cells’ FAK
activation

According to previous researches and literatures,
MFAP2 was an ECM protein whose function is to help
structure elastic fibers'®. So we explored whether the
extracellular MFAP2 could influence focal adhesion for-
mation. MFAP2 recombinant protein was added to the
AGS and HGC-27 cell lines. Notably, treated with MFAP2
recombinant protein greatly enhanced migration and
invasion rates of AGS and HGC-27 cells in Transwell
assays (Fig. 6a). Then we added MFAP2 into AGS cell line
at different concentrations and time gradients. As shown
in picture, MFAP2 rapidly activated paxillin, FAK, and
ERK1/2 in a time- and concentration-dependent manner
(Fig. 6b, c). Immunostaining with pY118paxillin and
F-actin showed that AGS cells rapidly made new focal

Oncogenesis

adhesions after treating with MFAP2 recombinant protein
(Fig. 6d, e). The expression of integrin a5p1 was reported
to be correlated with ERK activity, and as an important
downstream kinase of FAK, the activity of ERK1/2 was also
closely related to MFAP2 knockdown or exogenous
MFAP2 treatment®*°, Therefore, we interrogated whe-
ther the integrin expression was modulated in an ERK1/2
activation-dependent way. The AGS cell line was treated
with an ERK1/2 inhibitor LY3214996 (200 nM) 2 h before
exposure to MFAP2 recombinant protein. As shown, the
expression of ITGA5 and ITGB1 significantly increased
after MFAP2 treatment, while the expression remained
unchanged when ERK1/2 inhibitor was pretreated (Fig. 6f).
In conclusion, our results revealed that the extracellular
MFAP2 was also strongly correlated with focal adhesion
formation and mainly function through integrin o531
receptor. Moreover, MFAP2-modulated integrin expres-
sion was partially through ERK1/2 activation.

Identification of MFAP2 as a novel target for miR-29

The mechanism of MFAP2 upregulation in GC tissues
remained to be solved. We first investigated whether
MFAP2 locus is amplified in human cancers using TCGA
data on cBioPortal. However, the incidence of homo-
zygous gain of MFAP2 locus was quite low (Fig. S1). We
then explored whether the promoter region of MFAP2
was methylated low in human cancers using TCGA data
available on MethHC. As shown, the methylation level of
MFAP2 promoter was also not significantly decreased in
cancer tissue (Fig. S2). Therefore, we focused on miRNA,
another key factor contributing to gene expression reg-
ulation. Three databases, including TargetScan, miRanda,
and miRWalk, were used to search potential microRNAs
that are complementary to the 3’-untranslated region
(UTR) of MFAP2. Only those miRNAs predicted by all of
these methods were considered. One candidate identified
was miR-29 family, whose family members miR-29a, miR-
29b, and miR-29c all have two complementary sites to 3’-
UTR of MFAP2 (located at 4—12 and 51-68, respectively,
Fig. 7a, Fig. S3). miR-29 family is downregulated in
GC332, After transfection with miR-29a, b and ¢, we
observed that MFAP2 was downregulated on both mRNA
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Fig. 5 Silencing of MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. a Image of the xenograft tumors formed in nude
mice injected with shRNA silencing of MFAP2 and scrambled shRNA control cells (NC). *P < 0.05. b Volume of xenograft tumors are summarized.
¢ Representative images of metastatic tumor nodules in the lung and liver section of nude mice intravenously injected with MFAP2 knockdown and
scrambled shRNA control cells (NC). d, e Representative images of H&E in the lung and liver section of nude mice (original magnification: x40,
calibration bar 125 pm). f, g Number of metastatic tumor nodules in the lung and liver are compared between nude mice injected with MFAP2
knockdown and scrambled shRNA control cells. **P < 0.01, *P < 0.05.
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and protein levels in AGS and HGC-27 cells (Fig. 7b, ¢).
Among the miR-29 family, miR-29a transfection induced
the most significant decrease of MFAP2 expression. Cells
co-transfected with a miR-29a and wild-type MFAP2 3'-
UTR presented a significant decrease in luciferase activity;
however, in the mutant groups, much less changes in
luciferase activity was observed (Fig. 7d). The luciferase
reporter assay suggested that miR-29 family suppressed
the transcription of the MFAP2 by targeting MFAP2.
Further analysis of GC samples revealed the significant
reciprocal association of expression levels between
MFAP2 with miR-29a (Fig. 7e). FAK and paxillin are
crucial integrin interactors and focal adhesion mar-
kers*>?®?, In AGS and HGC-27 cells, we observed that
ITGB1, ITGA5, FAK, pY397FAK, paxillin, and
pY118paxillin were downregulated after transfection with
miR-29a mimics and upregulated after transfection with
miR-29a inhibitors, which mimic the effects of MFAP2
knockdown or overexpression (Fig. 7f). To better visualize
the correlation between MFAP2 and miR29a, we trans-
fected AGS with miR-29a or scrambled control, and after
48 h, MFAP2 recombinant protein was added to activate
the focal adhesion formation. As shown, treatment with
MFAP2 could rescue the inhibition of miR29a on focal
adhesion formation (Fig. 7g, h). Collectively, our results
indicate that MFAP2 is a direct target of miR-29 family,
and its dysregulation may have resulted from the loss of
miR-29 family in GC.

Discussion

Gene expression profile data were typically produced on
a small scale in most studies, and the list of DEGs from
different studies showed distressing inconsistency’®.
Even though some important “driver genes” in GC have
been obtained from DEGs, excessive attention to single
gene function may miss important changes of biological
characters, which are often determined by a set of genes
acting in concert®®, Many hallmarks of cancer have been
presented such as sustaining proliferation, resistance to
cell death, enhancing angiogenesis, and activating
metastasis®®. In this study, via integrative reanalysis of
several expression profile datasets, we identified a novel,
generalizable hallmark of GC: matrix remodeling.

In this study, we obtained 14 genes associated with
prognosis of GC patients. Most of them participate in
matrix remodeling during cancer progression, including
MEFAP2. MFAP2 plays a vital role in the regulation of
integrin signal pathway in cancer cell-ECM interaction.
The intracellular form of MFAP2 can induce the tran-
scription of integrin o4 in human osteosarcoma cell line
SAOS-2'%; in vascular development, MFAP2 defect will
result in the reduction of integrin—matrix interaction>®;
our findings highlight the capability of MFAP2 to modify
the phenotype of GC cells, partly by upregulating integrin
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a5p1. In this study, we concluded that MFAP2 might be
an activator of integrin/FAK/ERK1/2 signaling in GC
progression; however, it may also function importantly in
GC carcinogenesis. In this work, there is only preliminary
research on the role of MFAP2 in GC and many issues
remain to be addressed. MFAP2 may exert oncogenic
function by alternative mechanism. MFAP?2 is associated
with microfibrils in ECM and can also induce the
expression of other matrix remodeling genes, such as
VCAN'?, Predictably, MFAP2 dysregulation will greatly
change the status of ECM in cancer microenvironment
and further modulate the phenotypes of cancer cells.
Intriguingly, MFAP2 was also found to be an unfavorable
indicator in multiple other cancers such as liver cancer,
pancreatic cancer, renal cancer, and cervical cancer in our
unpublished data. The mechanism of how MFAP2 exhi-
bits functions in cancers remains to be studied in detail. In
this study, we made a hypothesis that extracellular form of
MFAP?2 is produced by GC cells and promotes disease
progression via autocrine secretion. Protein carriers
between cancer cells and ECM such as exosome were
potential mediators to transport MFAP2 to cancer
microenvironment, and this need to be further explored
and validated. Cancer-associated fibroblast is also an
important regulator in matrix remodeling and whether it
can secrete MFAP2 and participate in the deposition of
MEFAP?2 are also worth studying. What is more, except for
MFAP2, among these 14 genes, OLFML2B, NREP, and
COL4A5 have not been investigated in GC previously,
and they are also candidates for further functional studies.

MiRNA consists of short noncoding sequences that
combine with target genes and inhibit gene expression by
mRNA translational repression or degradation®. It has
been demonstrated that miR-29 is downregulated in most
cancers including GC*"**~*2, Many downstream genes of
miR-29 are matrix remodeling-related genes. For exam-
ple, miR-29 mediates TGF-Bfl-induced ECM synthesis
through activating Wnt/B-catenin pathway in human
pulmonary fibroblasts*?; in breast cancer tissues, miR-29
inhibits ECM network genes™; in pancreatic cancer, loss
of miR-29 is correlated with a significant increase in ECM
deposition®. In this study, we identify that MFAP2 is a
direct target gene of miR-29, not only explaining the
possible mechanisms of MFAP2 high expression in GC
but also helping make the fact more explicit that miR-29
family is the crucial miRNA in matrix remodeling. A
single miRNA can regulate multiple genes involved in a
biological process. Some researchers think that, compared
with conventional pharmacological approaches, the use of
miRNA as a therapeutic agent may be more effective in
some diseases™. Our results suggest that MFAP2 dysre-
gulation partially resulted from loss of miR-29 family in
GC, and miR-29-based therapy is promising in reversing
aberrant ECM status of GC.
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Fig. 7 Identification of MFAP2 as a novel target for miR-29. a The target sites of miR-29a in 3-UTR of MFAP2 are shown as a schematic
representation. b Real-time RT-PCR showed the expression of MFAP2 mRNA in AGS and HGC-27 cells transfected with miR-29a mimics or
inhibitors. **P < 0.01 vs. blank, AMAP < 0.01 vs. control. ¢ Western blotting assays showed the expression of MFAP2 protein in AGS and HGC-27 cells
transfected with miR-29a mimics or inhibitors. d Wild-type or mutant 3-UTR constructs of MFAP2 were cloned into a psi-CHECK2 vector,
respectively, and cotransfected with miR-29a mimics in HEK293 cells. Renilla luciferase activities were normalized to firefly luciferase activities. All
assays were performed in triplicates and repeated at least three times. ***P < 0.001, **P < 0.01, *P < 0.05. e An inverse correlation was found
between miR-29a expression and MFAP2 in GC samples (Spearman’s correlation, P < 0.001, R = —0.758). Each value presents the mean + S.EM. of
three independent triplicate experiments. ***P < 0.001, **P < 0.01. f Western blotting analysis was performed to examine the expression change of
ITGB1, ITGAS, FAK, and paxillin in AGS and HGC-27 cells transfected with miR-29a mimics or inhibitors. g, h Western blot and immunostaining
showed that mi29a inhibited activation of FAK and paxillin while this inhibition could be rescued by MFAP2 (Green: F-actin, Red: pY118paxillin or

pY397FAK, Blue: hoechst).

Conclusion

In conclusion, our findings indicated that matrix remo-
deling is crucial in the development of GC. This study also
provided potential biomarkers and therapy targets for GC
and identified miR-29/MFAP2/integrin a531/FAK/ERK1/2
as an important oncogenic pathway in GC progression.
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