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Application of Neonatologist Performed Echocardiography in
the assessment and management of persistent pulmonary
hypertension of the newborn
Willem P. de Boode1, Yogen Singh2, Zoltan Molnar3, Ulf Schubert4, Marilena Savoia5, Arvind Sehgal6, Philip T. Levy7,8,
Patrick J. McNamara9 and Afif El-Khuffash10,11 on behalf of the European Special Interest Group ‘Neonatologist Performed
Echocardiography’ (NPE)

Pulmonary hypertension contributes to morbidity and mortality in both the term newborn infant, referred to as persistent
pulmonary hypertension of the newborn (PPHN), and the premature infant, in the setting of abnormal pulmonary vasculature
development and arrested growth. In the term infant, PPHN is characterized by the failure of the physiological postnatal decrease in
pulmonary vascular resistance that results in impaired oxygenation, right ventricular failure, and pulmonary-to-systemic shunting.
The pulmonary vasculature is either maladapted, maldeveloped, or underdeveloped. In the premature infant, the mechanisms are
similar in that the early onset pulmonary hypertension (PH) is due to pulmonary vascular immaturity and its underdevelopment,
while late onset PH is due to the maladaptation of the pulmonary circulation that is seen with severe bronchopulmonary dysplasia.
This may lead to cor-pulmonale if left undiagnosed and untreated. Neonatologist performed echocardiography (NPE) should be
considered in any preterm or term neonate that presents with risk factors suggesting PPHN. In this review, we discuss the risk
factors for PPHN in term and preterm infants, the etiologies, and the pathophysiological mechanisms as they relate to growth and
development of the pulmonary vasculature. We explore the applications of NPE techniques that aid in the correct diagnostic and
pathophysiological assessment of the most common neonatal etiologies of PPHN and provide guidelines for using these
techniques to optimize the management of the neonate with PPHN.
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INTRODUCTION
Persistent pulmonary hypertension of the newborn (PPHN) is a
complex disorder that is characterized by the presence of an
increased pulmonary vascular resistance (PVR) associated with
shunting of deoxygenated blood from the pulmonary to the
systemic circulation causing severe hypoxemia.
PPHN occurs in about 1–2 per thousand live born infants,

mostly in term and late preterm newborns.1–4 It is associated with
an increased risk of an adverse outcome (5-year survival
approximately 90%; neurologic impairment in 15–25%) 4,5. The
vascular pruning, abnormal vasculature, and vaso-reactivity in
infants with bronchopulmonary dysplasia (BPD) set the tone for
the development of pulmonary hypertension (PH) in this
population as well.6–8 It is a known complication of BPD, with the
incidence increasing with the severity of BPD.9 In infants with
‘severe’ BPD, two recent cohorts put the incidence at >50%.9,10

Echocardiographic signs of PH in preterm infants in an early phase

(72 h to 14 days of age) are associated with decreased in-hospital
survival and an increased incidence of moderate-severe BPD.11

Common risk factors for the development of PPHN in (near-)
term infants and PH in preterm neonates are summarized in
Table 1.7,12,13

The typical clinical picture is a patient with hypoxic cardio-
respiratory failure with a pre-/postductal difference in oxygen
saturation of ≥5%, although this difference will be attenuated in
the presence of a relevant atrial right-to-left shunt. It should be
noted that a pre-/postductal oxygen saturation difference can also
be caused by left-sided obstructive heart disease, such as
coarctation of aorta, interrupted aortic arch, and hypoplastic left
heart disease. Measuring pre- and postductal blood pressure can
also be helpful and may give insights regarding the presence of
shunts. Postductal blood pressure may be heavily influenced by a
right-to-left transductal shunt and falsely miss low preductal blood
pressure, which is crucial.
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Distinguishing between PPHN and cyanotic heart lesions on
clinical grounds can be challenging. This, however, is essential
since management for these disorders are quite different. Clinical
signs and symptoms suggestive of an underlying congenital heart
defect are summarized in Table 2.
Delay in the diagnosis and appropriate treatment of a cyanotic

heart disease is associated with worsening prognosis. It is
therefore imperative to have a comprehensive echocardiographic
evaluation to rule out any structural abnormality. When in doubt
during the time before echocardiography can be performed, it is
advised to start prostaglandin E1 in anticipation of a potential
heart defect. In a patient with PPHN, prostaglandin E1 might have
some pulmonary vasodilatory effects, and in severe PPHN, it will
preserve postductal systemic perfusion, albeit at the expense of
cyanosis. It should be noted that the institution of a treatment
regimen aiming at pulmonary vasodilation may deteriorate the
clinical condition of the patients with certain heart defects, such as
total anomalous pulmonary venous connection (TAPVC) and
hypoplastic left heart syndrome.
The following structural heart defects may clinically mimic

PPHN: TAPVC, transposition of great arteries (TGA), pulmonary
atresia with or without ventricular septal defect (VSD), severe
Fallot’s tetralogy, tricuspid atresia, unguarded tricuspid orifice
syndrome, severe Ebstein anomaly, and sometimes even left-sided
obstructive heart disease (such as coarctation of aorta, interrupted
aortic arch, and hypoplastic left heart disease).

ETIOLOGY
Pulmonary artery pressure (PAP) is determined by pulmonary
blood flow (PBF), PVR, and pulmonary capillary wedge pressure
(PcWP), as shown in the following Eq. 1.

PAP¼ PcWPþ PBF ´ PVRð Þ: (1)

Under normal circumstances, PAP falls after birth within
2 months to reach a level that is comparable to adult values
(systolic PAP <25mmHg).
As can be derived from Eq. 1, PH can be caused by an increase

in PcWP (left heart failure, for example secondary to arteriovenous
malformations, such as vein of Galen aneurysmal malformation
(VGAM)), by an increase in PBF (e.g., large left-to-right shunt with
pulmonary hyper-perfusion), or by raised PVR (e.g., pulmonary
vasoconstriction). A combination of these factors is also possible.
In PPHN, the rise in pulmonary blood pressure is generally

secondary to an increased PVR with the following etiology:14

1. Maladaption of pulmonary vasculature (abnormal, ‘reactive’
pulmonary vasoconstriction)

1.1. due to parenchymal lung diseases, such as meconium
aspiration syndrome (MAS), respiratory distress syn-
drome (RDS), hypoventilation, and pneumonia

1.2. in response to certain stimuli, such as hypothermia,
sepsis, stress, hypercapnia, hypoxemia, acidosis, and
hyperviscosity

1.3. toxic/pharmacological (maternal SSRI use)

2. Maldevelopment of pulmonary vasculature (remodeling of
pulmonary vasculature) in response to:

2.1. in utero closure of ductus arteriosus (for example
maternal cyclooxygenase inhibitor use)

2.2. pulmonary hyperperfusion in congenital heart disease
with large left-to-right shunt

2.3. infants with fetal growth restriction

3. Underdevelopment of pulmonary vasculature (hypoplastic
pulmonary vessels; decreased cross-sectional area), such as
in:

3.1. congenital diaphragmatic hernia
3.2. pulmonary hypoplasia (premature prolonged rupture of

membranes, oligohydramnios and anhydramnios).
Respiratory disorders that are associated with PH include:

congenital diaphragmatic hernia, BPD, alveolar capillary dysplasia
(with or without misalignment of veins), lung hypoplasia (‘primary’
or ‘secondary’), surfactant protein abnormalities, pulmonary
interstitial glycogenosis, pulmonary alveolar proteinosis, and
pulmonary lymphangiectasis.15 Recently, it was recognized that
PH can be caused by pulmonary venous stenosis, especially in
preterm infants with BPD, that is often overlooked.16,17 In about
10–20%, no specific cause of PPHN is found (‘idiopathic’ PPHN).14

HEMODYNAMIC PROFILE OF PPHN
The key features in PPHN are an increased PVR resulting in high
PAP, ductal and/or atrial right-to-left shunting, and right (and
ultimately left) ventricular dysfunction. This leads to:

• Right ventricular systolic and diastolic failure secondary to
increased afterload
•Decrease in RV stroke volume and RV filling
•Decrease in pulmonary blood flow with ventilation-perfusion
mismatch

Table 1. Risk factors for pulmonary hypertension in (near-) term and
preterm infants

Term and near-term infants (PPHN) Preterm infants (PH)

•Male gender
• African or Asian maternal race
•Maternal morbidity, such as obesity,
diabetes, and asthma
• Birth after cesarean section
• Chorioamnionitis
•Meconium-stained amniotic fluid
• Antenatal exposure to selective
serotonin re-uptake inhibitors (SSRI),
cyclooxygenase inhibitors (COXi),
certain “medications” (Chinese herbs)
• Perinatal infection
• Perinatal asphyxia
• Hypothermia
•Metabolic derangements, like
hypocalcaemia and acidosis
• Stress, pain stimuli
• Polycythemia
• Trisomy 21

• Severe bronchopulmonary
dysplasia
• Lower gestational age at
birth
• Lower birth weight
• Small for gestational age
• Pulmonary hemorrhage
• Sepsis
•Oligohydramnios and
anhydramnios
• Prolonged duration of
invasive respiratory
support
• Increased length of stay in
hospital

Table 2. Clinical signs and symptoms suggestive for a congenital
heart defect (‘red flags’)

• Absence of suggestive risk factors or clinical triggers (Table 1)

•No signs of respiratory distress

• Presence of heart murmur

• Reduced femoral pulsations

• Abnormal heart configuration/cardiomegaly on chest X-ray

• Blood pressure gradient between upper and lower body

• Lack of response to high concentrations of oxygen

•No effect of nitric oxide inhalation or other vasodilators
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• RV dilatation causing a D-shaped left ventricle with decreased LV
preload
•Decreased LV stroke volume
• Right-to-left shunting through the ductus arteriosus and/or
foramen ovale.

In a severe form of PPHN, this ductal and/or atrial right-to-left
shunt may guarantee postductal or preductal systemic perfusion,
respectively, however, at the expense of cyanosis.

ECHOCARDIOGRAPHY
Comprehensive echocardiography is indicated when there is
a clinical suspicion of PPHN to exclude congenital heart disease.
Neonatologist performed echocardiography (NPE) is useful in

multiple ways: (a) making the diagnosis and grading the severity,
(b) determining the need for specific (pulmonary vasodilator) or
supportive (choice of inotrope) therapy, (c) monitoring the
response to therapy, and (d) rational weaning of therapy. This is
especially relevant when administering inhaled nitric oxide (iNO)
for infants <34 weeks’ gestation, where multiple randomized
controlled trials have suggested limited evidence.18,19 According
to the recent AHA/ATS guidelines, iNO can be beneficial for
preterm infants with severe hypoxemia that is due primarily to
PPHN physiology rather than parenchymal lung disease, particu-
larly if associated with prolonged rupture of membranes and
oligohydramnios.20

Once the diagnosis of PPHN is confirmed by echocardiography,
the clinical course and the effects of medical interventions can be
monitored using NPE with the emphasis on:
1. pulmonary artery pressure and PVR,
2. myocardial performance, and
3. shunting through ductus arteriosus and open foramen ovale.
An overview of all echocardiographic parameters that can be

assessed with NPE is presented in Table 3.

Estimation of PAP or PVR
PAP can be assessed by measuring tricuspid valve regurgitation
peak velocity, pulmonary regurgitation peak velocity, transductal
right-to-left flow peak velocity, interventricular septum (IVS)
configuration, and LV systolic eccentricity index (LV-sEI).

Tricuspid regurgitation peak velocity. Systolic pulmonary artery
pressure (SPAP) can be estimated by measuring the peak velocity
of tricuspid valve regurgitation with the use of the modified
Bernoulli’s equation; see Eqs. 2 and 3:

p ¼ 4 ´ v2

p;pressure gradient inmmHgð Þ; v;blood velocity inm=sð Þð Þ; (2)

SPAP � RVSP ¼ 4 ´ VmaxTRð Þ2þRAP

RSVP; right ventricular systolic pressure inmmHgð Þ;ð
VmaxTR;peak velocity of tricuspid regurgitation inm=sð Þ;

RAP; right atrial pressure inmmHgð ÞÞ

(3)

RAP is usually not measured, and a value of 3–5mmHg is
generally assumed. The estimation of SPAP by measuring TR is
reliable and often equivalent to pressures measured in the
catheter lab while using continuous wave Doppler (Fig. 1).
However, the accuracy depends on the quality of the acquired
TR jet. An optimal quality TR jet shows a well demarcated
envelope. Measuring an inadequate Doppler spectral envelope
will potentially lead to an underestimation of SPAP. The angle of
insonation should be less than 20° to achieve a reliable measure-
ment. This is aided by assessing maximal TR jet velocity by
imaging from three views (apical 4 chamber, short axis, and
modified parasternal long axis). However, this estimation of SPAP
is not reliable in the presence of right ventricular failure or right
ventricular outflow tract obstruction. Tricuspid valve regurgitation
cannot always be observed and is present in approximately
60–85% of patients with PPHN.21–25

Pulmonary regurgitation peak velocity. In the presence of
pulmonary valve regurgitation, mean PAP (MPAP) can be
estimated by measuring its peak velocity using Eq. 4:

MPAP ¼ 4 ´ VmaxPRð Þ2þ RVdP

MPAP;meanpulmonary artery pressure inmmHgð Þ;ð
VmaxPR;peak velocity pulmonary valve incompetence inm=sð Þ;

RVdP; right ventricular diastolic pressure inmmHgð ÞÞ:
(4)

The RVdP is generally assumed to be around 2–5mmHg.

Transductal right-to-left blood flow peak velocity. Transductal
right-to-left blood flow can be used to estimate SPAP, when it
lasts ≥30% of the heart cycle, by measuring its peak velocity using
Eq. 5:

SPAP ¼ 4 x VmaxDAð Þ2 þ SSAP

SPAP; systolic pulmonary artery pressure inmmHgð Þ;ð
VmaxDA;peak velocity ductal right�to�left shunt inm=sð Þ;

SSAP; systolic systemic arterial pressure inmmHgð ÞÞ:

(5)

A ductal right-to-left or bidirectional shunt is observed in
73–91% of the patients with PPHN.11,12,15 However, measurement
of PAP via ductal flow is often not reliable. Assessment of the
direction of transductal blood flow is more useful and will indicate
the relation between pulmonary and systemic pressures.

IVS configuration/LV-sEI. An alternative, although more subjec-
tive, estimation of PAP is based upon the alignment of the IVS
(Table 4). Normally the septum bows into the right ventricle (O-
shaped LV) and with increasing right ventricular pressure, the IVS
will flatten (D-shaped LV) and eventually curves into the left
ventricle (crescent-shaped LV) (see Fig. 2).5 It is best analyzed at
the end of systole in the parasternal short axis view above the
level of the papillary muscles.26

Table 3. Overview of echocardiographic parameters for the assessment of pulmonary artery pressure (PAP), pulmonary vascular resistance (PVR),
right ventricular (RV) performance, and shunts in patients with PPHN

PAP PVR RV performance Shunts

1. TR peak velocity (SPAP)
2. PI peak velocity (DPAP)
3. Transductal RtL flow peak velocity (SPAP)
4. IVS configuration/LV-sEI

5. RV systolic time intervals
PAAT
PAAT/RVET ratio
RVPET/RVET ratio

6. TRV/VTI[RVOT] ratio
7. Pulmonary artery compliance

8. TAPSE
9. FAC
10. MPI
11. RV S/D ratio
12. TDI RV free wall & IVS
13. STE

14. Transductal shunting
Direction
Peak flow velocity

15. Interatrial shunting
Direction
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A more objective estimation is made by calculating the LV-sEI,
which is the ratio of LV dimension parallel and perpendicular to
the septum, respectively. Figure 3 shows the measurement of LV-
sEI from short axis parasternal view. The LV-sEI measure is a
derivation from IVS configuration. Normal LV-sEI ratio is typically 1
and as it increases in PH, it allows for quantification of a more
subjective parameter of IVS flattening/bowing. In adult literature, a
ratio >1 in systole denotes RV pressure overload. In a recent study
on infants with BPD associated PH, LV-sEI was significantly higher
in the infants with PH.27 LV diastolic EI is more a marker of volume
overloaded right ventricle; for clinical conditions such as PPHN,
pressure overload predominates, and hence the usefulness of the
sEI.
PVR can be assessed by measuring right ventricular systolic time

intervals (pulmonary artery acceleration time (PAAT), right
ventricular ejection time (RVET), right ventricular pre-ejection time
(RVPET)), TRV:VTI[RVOT]-ratio (ratio between tricuspid regurgitation
velocity (TRV) and the velocity–time integral (VTI) of blood flow
through the right ventricular outflow tract (RVOT)), and pulmonary
artery compliance.

Right ventricular systolic time intervals. Right ventricular systolic
time intervals are another validated method for the estimation of
PVR. The following right ventricular time intervals can be derived
from the Doppler PBF velocity curve: RVET, RVPET, and PAAT, also
referred to as time to peak velocity (TPV) (see Fig. 4).
Until recently, the methods for the estimation of PAP using the

peak velocity of pulmonary regurgitation was considered more
reliable than right ventricular systolic time intervals, since the
repeatability of these time intervals was shown to be rather
disappointing.28–30 However, PAAT has recently been validated as

a feasible and reproducible, non-invasive echocardiographic
imaging marker, for detection of pulmonary vascular disease
and PH in neonates and children.31 This study, with simultaneous
Doppler echocardiography and invasive catheterization, estab-
lished PAAT-based regression equations in children to accurately
predict invasive catheterization-derived SPAP and PVR. A cutoff
value of <90 ms reliably detects pulmonary vascular disease, and a
value <40ms detects pulmonary vascular disease in its most
severe form of PH. The normal value of the PAAT:RVET ratio is
approximately 0.31 or greater. A PAAT:RVET ratio less than 0.23
and/or an increased RVPET:RVET ratio is indicative for increased
PAP.31 Visual inspection of the shape of the Doppler flow envelope
pattern across the RV outflow tract is a sensitive predictor of PH
and right heart dysfunction in children and infants. The mid-
systolic notch, also referred to as the “flying W”, is associated with
elevated PVR and PAP (Fig. 4—right panel).32

TRV/VTI[RVOT]. PVR can be estimated by calculating the TRV:
VTI[RVOT] ratio, which is the ratio between TRV and the VTI of blood
flow through the RVOT using pulsed-wave Doppler in the
parasternal short axis.33–35 The obtained VTI in the RVOT will be
markedly changed in the presence of high PVR due to an earlier
and enhanced reflection of the pressure wave. Higher PVR will
lead to a decrease in VTI[RVOT]. TRV:VTI[RVOT] ratio have been shown
to correlate well with PVR in children and a cut off value of 0.14
provided high predictive values.34 However, neonatal studies are
lacking.

Pulmonary artery compliance. Echocardiography can be used to
estimate dynamic pulmonary artery compliance (CdynPA) non-
invasively by measuring pulmonary diameter in systole (Ds) and
diastole (Dd) and analyzing the TR jet to calculate SPAP.36

CdynPA ¼ Ds� Ddð Þ= Dd ´ SPAPð Þ½ � ´ 104
CdynPA;dynamic pulmonary artery compliance

in% change=100mmHgð ÞD;diameter in cmð Þ:
(6)

Lower CdynPA is found in children with PH.36 There is a paucity
of data on this measurement in the term and preterm neonatal
population.

Qualitative assessment of right ventricular, right atrial, and
pulmonary diameters. An increased PVR can cause an increased
pulmonary artery diameter. Impaired right ventricular systolic and
diastolic performance will lead to dilation of the right ventricle,
right atrium, and inferior vena cava. Normative data for right
ventricular size have been published.37–40

Myocardial performance. Biventricular dysfunction can be found
in up to 70% of patients with PPHN and is thought to be related to
increased right ventricular afterload, decreased left ventricular
preload in addition to possible myocardial ischemia.24,25

Classical PPHN (acute, soon after birth, secondary to pathologies
like MAS) is a pre-capillary disorder. The right heart is dilated but
the LV is not (due to reduced preload to LV, and septal shift into
the LV). One might find lower PcWP, as the malady is caused by
elevated PVR. Hence, pulmonary vasodilators work well. BPD
associated PH is another beast, and some infants have post-
capillary pathophysiology as an important contributor. This group
is clinically characterized by an elevated PcWP and no response to
or deterioration after start of pulmonary vasodilators such as iNO
and sildenafil. Unfortunately, invasive cardiac catheterization is
not easily available, and many of these infants may not tolerate
that. Echocardiographic clues to this malady are dilated LV and
increased LA end-diastolic pressure. This cohort needs systemic
and not pulmonary vasodilators as the pathophysiology centers
on elevated ‘systemic’ more than ‘pulmonary afterload’.41

Table 4. Estimation of RVP based on LV configuration

Left ventricular configuration Estimated RVP

O-shaped LV <50% of LVP

D-shaped LV 50–100% of LVP

Crescent-shaped LV ≥100% of LVP

LV left ventricle, RVP right ventricular pressure, LVP left ventricular pressure

TR Vmax1
TR maxPG

5.12 m/s
104.86 mmHg

SABP 59/42 (48)

V

Fig. 1 Estimation of SPAP from tricuspid regurgitation jet. The peak
velocity of the tricuspid regurgitation jet is 5.12 m/s, which
corresponds to a maximum pressure gradient of 105mmHg
according to the modified Bernoulli equation (see left upper panel).
On the right, the concomitant systemic arterial blood pressure is
displayed, indicating suprasystemic pulmonary pressure
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A nearly consistent finding in (near-)term patients with PPHN is
a low left ventricular output (LVO) and reduced LV stroke volume
(LV-SV) in combination with normal or mildly decreased LV-EF,
that is explained by reduced preload secondary to right-to-left
shunting (decreased pulmonary venous return) and
ventricular–ventricular interaction (flattening of IVS).21,22,25

Echocardiographic markers of left ventricular failure (reduced LV
size and stroke volume) are associated with the need for more
intense treatment, such as high frequency ventilation and ECMO
in newborn infants diagnosed with PPHN.23

Right ventricular function can be assessed by measuring the
fractional area change (FAC), myocardial performance index (RV-
MPI), right ventricular systolic to diastolic duration ratio (RV S/D
ratio), and tricuspid annular plane systolic excursion (TAPSE).
Left ventricular function can be analyzed by monitoring

myocardial performance (LV-MPI), LV-SV and LVO, and ejection
fraction (EF biplane Simpson).
By using tissue Doppler imaging (TDI) and speckle-tracking

echocardiography (STE), the performance of both ventricles can
be assessed.

Tricuspid annular plane systolic excursion (TAPSE). TAPSE is a
measure of RV longitudinal function and obtained from the 4-
chamber view using the M-Mode with the cursor aligned along
the direction of the lateral annulus (see Fig. 5). TAPSE provides
useful information about longitudinal fiber shortening and it has
shown good correlation with techniques estimating RV global
systolic function. However, it should be noted that TAPSE is both
angle and load dependent. Normal values in the neonatal
population can be obtained from Koestenberger et al.42 Dimin-
ished TAPSE (<4 mm) is predictive for the need of ECMO and
death in infants with PPHN.43

Fractional area change (FAC). FAC is a planimetric measure of the
ratio of systolic to diastolic area in apical 4- or 3-chamber view by
manual tracing of the endocardial border of the right ventricle.
Unlike TAPSE, right ventricular FAC is affected by radial, basal, and
apical functions as well as longitudinal fiber shortening, but it is
considered to be more prone to operator-dependent variation.
FAC is calculated by the following formula:

FAC ¼ RV area diastoleð Þ � RV area systoleð Þ½ �=RV area diastoleð Þ:
(7)

It is important that the entire ventricle is visualized when
tracing the endocardium in systole and diastole including the
outflow tract and the lateral wall (Fig. 6). Trabeculation should be
included within the cavity under the tracing procedure. Normal
values (25–45%) in preterm and term infants have been
published.38,43,44 Median values of 19% were associated with the
need for ECMO or death.43

Myocardial Performance Index (MPI). The MPI, also referred to as
Tei index, represents the relation between the sum of isovolumic
contraction and relaxation time and ejection time and can be
derived from pulsed Doppler or tissue Doppler (Fig. 7). Right
ventricular dysfunction (but also increased RV afterload) will
increase the time of isovolumic phases and therefore lead to a
higher MPI. The index is normally used to estimate global
ventricular function of the left ventricle, but the application in
the pediatric and neonatal population for right ventricular
performance is widely accepted.45,46 MPI of both the RV and LV
are significantly elevated in infants with PPHN.25

Global RV myocardial performance index (MPI) can subse-
quently be calculated using Eq. 8 .
Reference values for these parameters in the neonatal period

have been published recently.38,42,47

MPI ¼ IVETþ IVRTð Þ=RVET
IVET; isovolumic ejection time;ð

IVRT; isovolumic relaxation time;

RVET; right ventricular ejection timeÞ:

(8)

Right ventricular systolic to diastolic duration ratio (RV S/D ratio).
The right ventricular systolic to diastolic duration ratio (RV S/D
ratio) is an index of systolic and diastolic (global) function of the
right ventricle and is assumed to reflect ventricular loading and
contractility. An increase in S/D ratio is seen as a sign of global
right ventricular dysfunction secondary to increased afterload.
The S/D ratio is calculated from the Doppler signal of tricuspid

valve regurgitation. The duration from onset to termination of
tricuspid valve regurgitation is the systolic duration (SD) and the
diastolic duration is the time between two jets of tricuspid
regurgitation (DD), see Fig. 8.48 The RV S/D ratio is related to SPAP

a b c

Fig. 2 Morphology of interventricular septum. Normally the septum bows into the right ventricle (a; O-shaped LV) and with increasing right
ventricular pressure, the interventricular septum will flatten (b; D-shaped LV) and eventually curves into the left ventricle (c; crescent-shaped
LV)

D1

D2

Fig. 3 LV systolic eccentricity index (LV-sEI). Left ventricle from short
axis view showing flattened septum and high systolic eccentricity
index (LV-sEI= D1/D2)
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a b

Fig. 5 Tricuspid annular plane systolic excursion (TAPSE). TAPSE is a measure of RV longitudinal function and obtained from the 4-chamber
view using the M-Mode with the cursor aligned along the direction of the lateral annulus. The traveled distance of the tricuspid annulus from
diastole to systole is expressed in millimeters

A

B

Fig. 7 Myocardial Performance Index—MPI or Tei index. Pulse wave
Tissue Doppler waveform (isovolumic contraction time (IVCT),
isovolumic relaxation time (IVRT), peak isovolumic systolic (IVV),
early diastolic (e′), late diastolic (a′), peak systolic (s′) velocity).
Myocardial performance index= the sum of isovolumic contraction
and relaxation time divided by ejection time (A−B/A)

Onset

RVET RVET

MSNPeak

a b

PAAT PAAT

Fig. 4 Right ventricular systolic time intervals. a Normal pulmonary artery pressure/pulmonary vascular resistance. b Increased pulmonary
artery pressure/pulmonary vascular resistance (MSN mid-systolic notch, PAAT pulmonary artery acceleration time, peak peak velocity, RVET
right ventricular ejection time). See text for details

End diastolic
area (EDA)

EDA

End systolic
area (ESA)

ESA

Fig. 6 Fractional area change (FAC). FAC is a planimetric measure of
the ratio of end systolic area (ESA) to end diastolic area (EDA) in
apical 4- or 3-chamber view by manual tracing of the endocardial
border of the right ventricle (FAC (%)= [EDA−ESA]/EDA). Trabecula-
tion should be included within the cavity under the tracing
procedure
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and RV performance.24,25,48 An increased RV S/D ratio (>1.3) is
associated with the need for ECMO or death.25

Tissue Doppler Imaging (TDI). Diastolic function is traditionally
studied by measuring the tricuspid valve inflow velocities (Early
(E), Late (A), and ratio (E/A)) during diastole by PW Doppler from
the apical 4-chamber view.
TDI derived deformation imaging calculates strain rate by

assessing the difference in velocity (the velocity gradient)
between two points along the longitudinal plane of the 4-
chamber view. Strain is then derived by integrating time into the
strain rate values. Only deformation along (parallel to) the beam of
the ultrasound is measured by the TD method and is therefore
highly dependent on the angle of insonation.
TDI of the right ventricular lateral wall with the sampling gate

positioned at the junction of tricuspid annulus allows assessment
of systolic and diastolic velocities.
Peak systolic (s′), early and late diastolic (e′ and a′) myocardial

velocities can be easily obtained by TDI, including time periods of
closing to opening of the tricuspid valve (TcOT′), isovolumic
relaxation time (IVRT), and the duration of systole (S) and diastole
(D) with the resultant S/D ratio.
Reduced systolic and diastolic TDI velocities have been found in

neonates with PH.49 In addition, reduced early diastolic velocity on
days 1 and 2 of life predicted early respiratory outcome in infants
with congenital diaphragmatic hernia.50

In term infants with severe PPHN not responsive to iNO, RV
strain (−17%) and strain rates (−1.5 1/s) significantly improves
following the administration of milrinone over a 24-h period (to
−23% and −2.2 1/s, respectively).51 This further highlights the
ability of deformation parameters to identify myocardial dysfunc-
tion and monitor treatment response.

Speckle-tracking echocardiography (STE). STE has been success-
fully used in the estimation of right ventricular function in term
and preterm infants, although the technique was originally
developed and validated for the left ventricle of adults.38,52,53 As
the longitudinal shortening is the main deformation of the right
ventricle, longitudinal strain seems to be the most robust
parameter in describing systolic right ventricular function.52 In
addition, diastolic measurements of early and late myocardial
movements can be obtained. As an angle-independent method, it
does not require geometric assumptions and has been used in the
neonatal and preterm population. In term infants with PPHN, a
reduced global systolic peak strain of the RV was associated with
progression to death or ECMO.43 In comparison to healthy
controls, term infants with PPHN in the first week of age have
worse RV function as shown by a decrease in the magnitude of RV
global longitudinal strain.54 Similarly, preterm infants with late
onset PH (~36 weeks postmenstrual age) also displayed lower
values of RV global and free wall longitudinal strain when
compared to preterm infants without PH.55 Sehgal et al. recently
reported the case of a 3-month-old infant where RV function was
monitored using STE in response to iNO administration.56 A
sequential change in global and segmental strain was observed
and regional asynchrony in segmental deformation was noted
additionally in response to iNO administration. Basal and middle
lateral segments showed paradoxical strain (lengthening, positive
value). Assessment of regional RV function helped understand
adaptive mechanisms and assess therapeutic interventions.

Ductal and/or atrial shunting
Secondary to increased pulmonary arterial pressure, deoxyge-
nated blood can shunt through the fetal channels (ductus
arteriosus and foramen ovale) to the systemic circulation leading
to hypoxemia (Fig. 9).
In 73–91% of patients with PPHN, a transductal right-to-left or

bidirectional shunt can be observed.21,22,25 A bidirectional shunt

with a systolic right-to-left duration ≥30% of the total heart cycle is
considered non-physiologic and likely to represent PPHN. An atrial
bidirectional or right-to-left shunt is detected in 73–100% of PPHN
patients.21,22,25 Also, left-to-right shunting over the interatrial
septum is possible, since in PPHN diastolic pulmonary artery
pressure is generally sub-systemic with suprasystemic SPAP. A
pure right-to-left shunt at the atrial level suggests TAPVC until
proven otherwise.
An exclusive right-to-left transductal shunt in patients with

PPHN is associated with an increased risk of mortality.22 However,
this does not imply that shunting is the primary problem; it is
merely a marker of disease severity. In the presence of RV
dysfunction, shunting through the fetal channels is a mechanism
to augment systemic blood flow and offset high RV afterload. The
PFO functions as the modulator of (preductal) cerebral blood flow,
whereas the PDA modulates blood flow to the body and to some
extent to the brain.

PRACTICAL ECHOCARDIOGRAPHIC APPROACH TO PPHN
One of the most important uses of echocardiography in the
NICU is in the management of PPHN. Echocardiography should
be performed to rule out a congenital heart defect, diagnose
PPHN, assess myocardial function, and guide therapy (fluid
bolus, choice of cardiovascular drugs). Serial echocardiography
is useful in monitoring the response to the treatment in PPHN.
We propose a guidance on the assessment of PPHN using NPE,

SD DD

Fig. 8 The right ventricular systolic to diastolic duration ratio (RV S/
D ratio) is an index of systolic and diastolic (global) function of the
right ventricle and is assumed to reflect ventricular loading and
contractility (SD systolic duration, DD diastolic duration)

Fig. 9 Transductal right-to-left shunting. In the parasternal short
axis view, the main pulmonary artery (MPA) is shown with the right
pulmonary artery (RPA), the left pulmonary artery (LPA), and the
ductus arteriosus (DA) with a clear right-to-left shunt (blue in color
Doppler)
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as depicted below. This list is not exhaustive, although not all
patients would need all the measurements in the management
of PPHN.

1. Structural assessment of the heart to rule out any congenital
heart defect, especially duct-dependent heart conditions or
significant congenital heart defects; should be done on the
first echocardiogram or at the earliest opportunity in a sick
neonate.

2. Assessment of (systolic) PAP—this can be measured
accurately if there is tricuspid regurgitation (TR). Absence
of TR or minimal TR does not rule out PPHN. Assessment of
PAP cannot be reliably done via ductal or atrial shunt.
However, direction of the shunt will give a good indication
about the pressure in relation to the systemic blood
pressure.

3. Assessment of the shunt direction across ductus arteriosus
—right to left, left to right, or bidirectional

4. Assessment of shunt across foramen ovale—right to left, left
to right, or bidirectional. If atrial shunt is purely right to left it
should be considered secondary to TAPVC until proven
otherwise.

5. Assessment of IVS morphology—flattening or bowing of IVS
towards LV suggest supra-systemic PAP or significant
volume overloading of the right ventricle (failing right
ventricle)

6. Right ventricular size—dilated or hypertrophied or both. RV,
RA, and pulmonary artery are commonly enlarged.

7. Objective assessment of RV function (by the methods
described in the text—TAPSE, TDI of IVS and RV free wall,
PAAT/RVET ratio, RV S/D ratio, RV fractional change, or STE)
is recommended. Subjective assessment of RV performance
is unreliable and inaccurate.

8. Trend of VTI across pulmonary valve or right ventricular
output can be used in monitoring the progress without
estimating the cardiac output. The cardiac output is often
contaminated by the shunts in this population.

9. Objective assessment of LV function (monitoring myocardial
performance (LV-MPI), LV-SV and LVO, ejection fraction (EF
biplane Simpson), TDI of IVS and LV free wall, or STE) is
recommended.

10. Focused serial echocardiography should be performed to
observe the progression, especially in sick infants who are
not responding to the intervention.

CONCLUSION
PH is a serious disorder that may occur in both term and preterm
infants. Neonatologist performed echocardiography is very useful
for the timely diagnosis of PH and targeting treatment to prevent
morbidity and mortality. For these purposes, many echocardio-
graphic variables can be evaluated, but unfortunately not one of
them is the ultimate predictive parameter to assess and manage
PH. It is advised to always perform a comprehensive echocardio-
graphic examination. One should bear in mind that NPE will not
improve outcome on its own, but it is used to guide treatment and
monitor hemodynamic responses that might prove beneficial for
the patient’s prognosis.
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