Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Maternal di(2-ethylhexyl) phthalate exposure increases the risk of congenital heart disease in mice offspring

Abstrct

Backgroud

Epidemiological data suggest that maternal occupational exposure to mixed phthalates comprising di(2-ethylhexyl) phthalate (DEHP) increases the risk of congenital heart disease (CHD). In this study, we used mice as an animal model to validate impact of first-trimester DEHP exposure on the risk of CHD in offspring, to elucidate the possible mechanisms and to provide a potential feasible intervention.

Methods and results

Eight-week-old C57BL/6J pregnant mice were randomly divided into standard and DEHP diet groups. The incidence of CHD in DEHP diet group offspring was up to 14.41% observed via Hematoxylin-eosin (HE) staining. Quantitative PCR analysis revealed that expression of key genes involved in cardiogenesis were suppressed at the transcriptional level, which may be due to decreased nuclear translocation of p65. The inhibition of DEHP on key genes was rescued to some extent by choline through driving p65 into nuclear. In the mice, supplementation of choline during DEHP exposure reduced the incidence of CHD in offspring from 14.41% to 4.63%.

Conclusions

Our study demonstrates that mice first-trimester DEHP exposure significantly increases the risk of CHD in the offspring via inhibiting mRNA levels of key genes in cardiogenesis, and choline could protect against the pathogenesis.

Impact

  • Our study provides key mechanistic insights into the risk of CHD by DEHP exposure during early pregnancy, and provides choline as a potentially effective intervention.

  • DEHP suppressed the expression of key genes involved in embryonic cardiac septum development at the transcriptional level via inhibiting nuclear translocation of p65.

  • Choline can play a role in rescuing the inhibition of DEHP on cardiogenesis genes via driving p65 translocate into the nuclear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exposure to DEHP in the first trimester increased risk of CHD in mice offspring.
Fig. 2: Exposure to DEHP during the first-trimester pregnancy inhibits the expression of key genes related to cardiogenesis.
Fig. 3: The mechanism by which DEHP exposure inhibits the expression of key genes in cardiogenesis.
Fig. 4: Choline supplementation can reduce the risk of CHD in mice embryos caused by DEHP exposure.

Similar content being viewed by others

Data availability

The data presented in the paper are available from the corresponding author on reasonable request.

References

  1. Liu, Y. et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J. Epidemiol. 48, 455–463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bruneau, B. G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Lage, K. et al. Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc. Natl Acad. Sci. USA 109, 14035–14040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaidi, S. & Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 120, 923–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, C. et al. Parental occupational exposures to endocrine disruptors and the risk of simple isolated congenital heart defects. Pediatr. Cardiol. 36, 1024–1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, G. & Li, Y. Exposure to DBP induces the toxicity in early development and adverse effects on cardiac development in zebrafish (Danio rerio). Chemosphere 218, 76–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Tang, C. et al. The effect of maternal exposure to di-(2-ethylhexyl)-phthalate on fetal cardiac development in mice. J. Appl Toxicol. 38, 834–842 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, Y. et al. Di-(2-ethylhexyl) phthalate exposure induces developmental toxicity in the mouse fetal heart via mitochondrial dysfunction. Cardiovasc. Toxicol. 25, 48–57 (2024).

  9. Das, M. T., Ghosh, P. & Thakur, I. S. Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ. Pollut. 189, 118–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Tsatsakis, A. M. et al. Encyclopedia of Environmental Health, 2nd edn. (Elsevier, Oxford, 2019).

  11. Zhao, H. et al. Investigation on metabolism of di(2-Ethylhexyl) phthalate in different trimesters of pregnant women. Environ. Sci. Technol. 52, 12851–12858 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Santos, S. et al. Maternal phthalate urine concentrations, fetal growth and adverse birth outcomes. A population-based prospective cohort study. Environ. Int. 151, 106443 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, J., Xu, Z., Huang, W., Feng, L. & Yang, F. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China. Sci. Total Environ. 554–555, 211–217 (2016).

    Article  PubMed  Google Scholar 

  14. Tran, M. T. M. T. et al. Prenatal DEHP exposure predicts neurological disorders via transgenerational epigenetics. Sci. Rep. 13, 7399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oluwayiose, O. A. et al. Paternal preconception phthalate exposure alters sperm methylome and embryonic programming. Environ. Int 155, 106693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, D. et al. Prenatal di-(2-ethylhexyl) phthalate exposure induced myocardial cytotoxicity via the regulation of the NRG1-dependent ErbB2/ErbB4-PI3K/AKT signaling pathway in fetal mice. Ecotoxicol. Environ. Saf. 241, 113771 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. Environ. Pollut. 316, 120673 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Sol, C. M. et al. Associations of maternal phthalate and bisphenol urine concentrations during pregnancy with childhood blood pressure in a population-based prospective cohort study. Environ. Int. 138, 105677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, H. et al. Combined effects of prenatal phthalate exposure on cardiometabolic risk score among 4- to 7-year-old children: MABC study. Chemosphere 311, 137135 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Tain, Y.-L., Hou, C.-Y., Chang-Chien, G.-P., Lin, S. & Hsu, C.-N. Resveratrol butyrate ester supplementation blunts the development of offspring hypertension in a maternal di-2-ethylhexyl phthalate exposure rat model. Nutrients 15, 697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei, Z. et al. Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol. Lett. 212, 212–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y. et al. DEHP and DINP induce tissue- and gender-specific disturbances in fatty acid and lipidomic profiles in neonatal mice: a comparative study. Environ. Sci. Technol. 53, 12812–12822 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Posnack, N. G. et al. Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes. PLoS ONE 10, e0121927 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Phthalates - ECHA. https://echa.europa.eu/hot-topics/phthalates (2010).

  25. Blum, J. L., Chen, L.-C. & Zelikoff, J. T. Exposure to ambient particulate matter during specific gestational periods produces adverse obstetric consequences in mice. Environ. Health Perspect. 125, 077020 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ravi, V., Jain, A., Taneja, A., Chatterjee, K. & Sundaresan, N. R. Isolation and culture of neonatal murine primary cardiomyocytes. Curr. Protoc. 1, e196 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Cai, K. et al. Nicotinamide mononucleotide alleviates cardiomyopathy phenotypes caused by short-chain enoyl-Coa hydratase 1 deficiency. JACC Basic Transl. Sci. 7, 348–362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rusyn, I., Peters, J. M. & Cunningham, M. L. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit. Rev. Toxicol. 36, 459–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Posnack, N. G., Swift, L. M., Kay, M. W., Lee, N. H. & Sarvazyan, N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ. Health Perspect. 120, 1243–1251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bustamante-Montes, L. P. et al. Phthalates exposure during pregnancy a study in a Mexican cohort. Toxicol. Rep. 8, 1040–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, T. et al. Effects of DEHP and its metabolite MEHP on cell apoptosis and the expression of steroidogenic genes in MLTC-1 cells. J. Environ. Hyg. 293, 281–287 (2018).

    Google Scholar 

  32. Pei, X., Duan, Z., Ma, M., Zhang, Y. & Guo, L. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol. Biol. Rep. 41, 2129–2142 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Bushdid, P. B., Osinska, H., Waclaw, R. R., Molkentin, J. D. & Yutzey, K. E. NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ. Res. 92, 1305–1313 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Y. et al. Crosstalk between aryl hydrocarbon receptor and Wnt/β-catenin signaling pathway: Possible culprit of di (2-ethylhexyl) phthalate-mediated cardiotoxicity in zebrafish larvae. Sci. Total Environ. 907, 167907 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, J. Exposure to Di-(2-ethylhexyl) phthalate drives ovarian dysfunction by inducing granulosa cell pyroptosis via the SLC39A5/NF-κB/NLRP3 axis. Ecotoxicol. Environ. Saf. 252, 114625 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Martínez-Razo, L. D., Martínez-Ibarra, A., Vázquez-Martínez, E. R. & Cerbón, M. The impact of di-(2-ethylhexyl) phthalate and mono(2-ethylhexyl) phthalate in placental development, function, and pathophysiology. Environ. Int. 146, 106228 (2021).

    Article  PubMed  Google Scholar 

  37. Karra, R., Knecht, A. K., Kikuchi, K. & Poss, K. D. Myocardial NF-κB activation is essential for zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 112, 13255–13260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaspar-Pereira, S. et al. The NF-κB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am. J. Pathol. 180, 929–939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, K. et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136, 501–515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X. et al. Distribution of phthalate metabolites between paired maternal–fetal samples. Environ. Sci. Technol. 52, 6626–6635 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Mose, T., Knudsen, L. E., Hedegaard, M. & Mortensen, G. K. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system. Int. J. Toxicol. 26, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Nappi, F. In-depth genomic analysis: The new challenge in congenital heart disease. Int J. Mol. Sci. 25, 1734 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruneau, B. G. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb. Perspect. Biol. 5, a008292 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caudill, M. A. Pre- and postnatal health: evidence of increased choline needs. J. Am. Diet. Assoc. 110, 1198–1206 (2010).

    Article  PubMed  Google Scholar 

  45. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (National Academies Press, Washington, 1998).

Download references

Funding

This research was funded by the grants from the National Natural Science Foundation of China (Nos. 82170305, 81770312) and grants from Discipline Leader Training Program of Children’s Hospital of Fudan University (No. EKXDPY202308) to F.W. This research was also funded by the grants from the National Natural Science Foundation of China (No. 82300428), Shanghai Sailing Program (No. 23YF1425500) to K.C. and the Open Program of NHC Key Laboratory of Neonatal Diseases (Fudan University).

Author information

Authors and Affiliations

Authors

Contributions

H.S., K.C. and F.W. contributed to the conception and design of the work. H.S., Z.Z. and A.S. contributed to the acquisition, analysis and interpretation of data. T.D., R.Z. and Y.S. contributed to the acquisition, analysis and interpretation of data as well as to supervision. H.S. drafted the manuscript. F.W., J.Z. and K.C. revised the manuscript for important intellectual content. All authors approved the final version of the manuscript and agreed to the version to be published.

Corresponding authors

Correspondence to Ke Cai or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Zhang, Z., Shen, A. et al. Maternal di(2-ethylhexyl) phthalate exposure increases the risk of congenital heart disease in mice offspring. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-03997-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-03997-z

Search

Quick links