Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Cerebrovascular autoregulation and preterm brain injury: a systematic review and meta-analysis

Abstract

Background

Preterm neonates are vulnerable to impaired cerebrovascular autoregulation (CAR), with a risk of developing cerebral injury (intraventricular hemorrhage or periventricular leukomalacia). In this meta-analysis, we evaluate the association between the degree of CAR and cerebral injury in preterm neonates, using various CAR assessment techniques mainly based on near-infrared spectroscopy.

Methods

We systematically searched PubMed and EMBASE between 01-05-2023 and 31-01-2024. We included original articles published between 2000-2023, reporting CAR and cerebral injury in preterm neonates. The study was registered in PROSPERO (ID: 427323). We assessed the standardized mean difference in degree of CAR in groups with and without cerebral injury, with a subgroup analysis of CAR measurement techniques.

Results

Seventeen articles were included, encompassing 742 patients. The overall standardized mean difference of 0.59 (95%CI 0.30, 0.88) indicates more impaired CAR in neonates with cerebral injury. Time-___domain analysis produced the least heterogeneous and most significant difference of 0.61 (95%CI 0.24, 0.98). Limitations include differences in measurement techniques and a lack of randomized controlled trials.

Conclusion

This meta-analysis showed an association between CAR and cerebral injury, highlighting the clinical relevance of CAR assessment in preterm neonates. Future randomized studies using standardized measurement techniques should assess the feasibility of CAR-guided hemodynamic management.

Impact

  • Cerebral injury and adverse neurological outcomes are prevalent in preterm neonates.

  • Historically, immature cerebrovascular autoregulation was thought to be one of the main causes of cerebral injury in this patient population.

  • This is the first study to systematically review and synthetize robust evidence on the relation between cerebrovascular autoregulation and preterm brain injury.

  • This meta-analysis further adds to the existing literature by comparing different cerebrovascular autoregulation measurement techniques.

  • The findings can help to standardize cerebrovascular autoregulation assessment and implement it in clinical practice using large, randomized trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot, overview of studies included in the meta-analysis.
Fig. 3: Forest plot, subgroup analysis grouped by cerebrovascular autoregulation (CAR) measurement techniques.

Similar content being viewed by others

Data availability

All data and analyses as generated with RevMan are included in the published article.

References

  1. Volpe, J. J. Intraventricular hemorrhage in the premature infant - current concepts. Part I. Ann. Neurol. 25, 3–11, https://doi.org/10.1002/ana.410250103 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res 50, 553–562, https://doi.org/10.1203/00006450-200111000-00003 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Benders, M. J., Kersbergen, K. J. & de Vries, L. S. Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin. Perinatol. 41, 69–82, https://doi.org/10.1016/j.clp.2013.09.005 (2014).

    Article  PubMed  Google Scholar 

  4. Volpe, J. J. Neurology of the newborn. Major Probl. Clin. Pediatr. 22, 1–648 (1981).

    CAS  PubMed  Google Scholar 

  5. Romantsik, O. et al. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr. Res. https://doi.org/10.1038/s41390-022-02075-y (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Vries, L. S., Benders, M. J. & Groenendaal, F. Progress in neonatal neurology with a focus on neuroimaging in the preterm infant. Neuropediatrics 46, 234–241, https://doi.org/10.1055/s-0035-1554102 (2015).

    Article  PubMed  Google Scholar 

  7. Johnson, S. et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. Arch. Dis. Child Fetal Neonatal Ed. 100, F301–F308, https://doi.org/10.1136/archdischild-2014-307684 (2015).

    Article  PubMed  Google Scholar 

  8. Marlow, N., Wolke, D., Bracewell, M. A., Samara, M. & Group, E. P. S. Neurologic and developmental disability at six years of age after extremely preterm birth. N. Engl. J. Med 352, 9–19, https://doi.org/10.1056/NEJMoa041367 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kooi, E. M. W. et al. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev. Neurother. 17, 801–818, https://doi.org/10.1080/14737175.2017.1346472 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Rhee, C. J. et al. Neonatal cerebrovascular autoregulation. Pediatr. Res 84, 602–610, https://doi.org/10.1038/s41390-018-0141-6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blaber, A. P., Zuj, K. A. & Goswami, N. Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur. J. Appl Physiol. 113, 1909–1917, https://doi.org/10.1007/s00421-012-2539-x (2013).

    Article  PubMed  Google Scholar 

  12. Martini, S. et al. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now?. Pediatr. Res. https://doi.org/10.1038/s41390-023-02574-6 (2023).

    Article  PubMed  Google Scholar 

  13. Kooi, E. M. W. & Richter, A. E. Cerebral autoregulation in sick infants. Curr. insights Clin. Perinatol. 47, 449–467, https://doi.org/10.1016/j.clp.2020.05.003 (2020).

    Article  Google Scholar 

  14. Alderliesten, T. et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 162, 698–704.e2, https://doi.org/10.1016/j.jpeds.2012.09.038 (2013).

    Article  PubMed  Google Scholar 

  15. Hoffman, S. B., Cheng, Y. J., Magder, L. S., Shet, N. & Viscardi, R. M. Cerebral autoregulation in premature infants during the first 96 h of life and relationship to adverse outcomes. Arch. Dis. Child Fetal Neonatal Ed. 104, F473–F479, https://doi.org/10.1136/archdischild-2018-315725 (2019).

    Article  PubMed  Google Scholar 

  16. O’Leary, H. et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics 124, 302–309, https://doi.org/10.1542/peds.2008-2004 (2009).

    Article  PubMed  Google Scholar 

  17. Soul, J. S. et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr. Res 61, 467–473, https://doi.org/10.1203/pdr.0b013e31803237f6 (2007).

    Article  PubMed  Google Scholar 

  18. Tsuji, M. et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106, 625–632, https://doi.org/10.1542/peds.106.4.625 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, F. Y. et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 121, e604–e611, https://doi.org/10.1542/peds.2007-1487 (2008).

    Article  PubMed  Google Scholar 

  20. Rios, D. R., Bhattacharya, S., Levy, P. T. & McNamara, P. J. Circulatory insufficiency and hypotension related to the ductus arteriosus in neonates. Front Pediatr. 6, 62, https://doi.org/10.3389/fped.2018.00062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martini, S. et al. Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatr. Res. 92, 135–141, https://doi.org/10.1038/s41390-022-02090-z (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Eriksen, V. R., Hahn, G. H. & Greisen, G. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr. 103, 1221–1226, https://doi.org/10.1111/apa.12817 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Solanki, N. S. & Hoffman, S. B. Association between dopamine and cerebral autoregulation in preterm neonates. Pediatr. Res 88, 618–622, https://doi.org/10.1038/s41390-020-0790-0 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemmers, P. M., Toet, M., van Schelven, L. J. & van Bel, F. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome. Exp. Brain Res 173, 458–467, https://doi.org/10.1007/s00221-006-0388-8 (2006).

    Article  PubMed  Google Scholar 

  25. Panerai, R. B., Dineen, N. E., Brodie, F. G. & Robinson, T. G. Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2. J. Appl Physiol. (1985) 109, 1860–1868, https://doi.org/10.1152/japplphysiol.00857.2010 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Mitra, S. et al. Heart rate passivity of cerebral tissue oxygenation is associated with predictors of poor outcome in preterm infants. Acta Paediatr. 103, e374–e382, https://doi.org/10.1111/apa.12696 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Abecasis, F., Dias, C., Zakrzewska, A., Oliveira, V. & Czosnyka, M. Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods. Childs Nerv. Syst. 37, 3057–3065, https://doi.org/10.1007/s00381-021-05263-z (2021).

    Article  PubMed  Google Scholar 

  28. Czosnyka, M., Smielewski, P., Kirkpatrick, P., Menon, D. K. & Pickard, J. D. Monitoring of cerebral autoregulation in head-injured patients. Stroke 27, 1829–1834, https://doi.org/10.1161/01.str.27.10.1829 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Brady, K. M. et al. Continuous time-___domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38, 2818–2825, https://doi.org/10.1161/STROKEAHA.107.485706 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. da Costa, C. S. et al. Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J. Pediatr. 167, 86–91, https://doi.org/10.1016/j.jpeds.2015.03.041 (2015).

    Article  PubMed  Google Scholar 

  31. Pichler, G., Urlesberger, B., Schmolzer, G. & Muller, W. Effect of tilting on cerebral haemodynamics in preterm infants with periventricular leucencephalomalacia. Acta Paediatr. 93, 70–75, https://doi.org/10.1080/08035250310007493 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sunwoo, J. et al. Diffuse correlation spectroscopy blood flow monitoring for intraventricular hemorrhage vulnerability in extremely low gestational age newborns. Sci. Rep. 12, 12798. https://doi.org/10.1038/s41598-022-16499-3 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1500 gm. J. Pediatr. 92, 529–534, https://doi.org/10.1016/s0022-3476(78)80282-0 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. de Vries, L. S., Eken, P. & Dubowitz, L. M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res 49, 1–6, https://doi.org/10.1016/s0166-4328(05)80189-5 (1992).

    Article  PubMed  Google Scholar 

  35. Wells, G. A. et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford; 2000.

  36. Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336, 924–926, https://doi.org/10.1136/bmj.39489.470347.AD (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Review Manager (RevMan). Version 8.3.0. The Cochrane Collaboration; 2024.

  38. da Costa, C. S., Czosnyka, M., Smielewski, P. & Austin, T. Optimal mean arterial blood pressure in extremely preterm infants within the first 24 h of life. J. Pediatr. 203, 242–248, https://doi.org/10.1016/j.jpeds.2018.07.096 (2018).

    Article  PubMed  Google Scholar 

  39. Vesoulis, Z. A., Liao, S. M. & Mathur, A. M. Delayed cord clamping is associated with improved dynamic cerebral autoregulation and decreased incidence of intraventricular hemorrhage in preterm infants. J. Appl Physiol. (1985) 127, 103–110, https://doi.org/10.1152/japplphysiol.00049.2019 (2019).

    Article  PubMed  Google Scholar 

  40. Stammwitz, A., von Siebenthal, K., Bucher, H. U. & Wolf, M. Can the assessment of spontaneous oscillations by near infrared spectrophotometry predict neurological outcome of preterm infants?. Adv. Exp. Med Biol. 876, 521–531, https://doi.org/10.1007/978-1-4939-3023-4_65 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Morren, G. et al. Quantitation of the concordance between cerebral intravascular oxygenation and mean arterial blood pressure for the detection of impaired autoregulation. Adv. Exp. Med Biol. 510, 403–408, https://doi.org/10.1007/978-1-4615-0205-0_67 (2003).

    Article  PubMed  Google Scholar 

  42. Eriksen, V. R., Hahn, G. H. & Greisen, G. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-___domain and frequency-___domain analyses. J. Biomed. Opt. 20, 037009, https://doi.org/10.1117/1.JBO.20.3.037009 (2015).

    Article  PubMed  Google Scholar 

  43. Claassen, J. A., Meel-van den Abeelen, A. S., Simpson, D. M. & Panerai, R. B. international Cerebral Autoregulation Research N. Transfer function analysis of dynamic cerebral autoregulation: a white paper from the international cerebral autoregulation research network. J. Cereb. Blood Flow. Metab. 36, 665–680, https://doi.org/10.1177/0271678X15626425 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chock, V. Y. et al. Cerebral oxygenation and autoregulation in preterm infants (early NIRS study). J. Pediatr. 227, 94–100.e1, https://doi.org/10.1016/j.jpeds.2020.08.036 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Vesoulis, Z. A., Liao, S. M., Trivedi, S. B., Ters, N. E. & Mathur, A. M. A novel method for assessing cerebral autoregulation in preterm infants using transfer function analysis. Pediatr. Res 79, 453–459, https://doi.org/10.1038/pr.2015.238 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Verhagen, E. A., Hummel, L. A., Bos, A. F. & Kooi, E. M. W. Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants. Clin. Neurophysiol. 125, 47–52, https://doi.org/10.1016/j.clinph.2013.07.001 (2014).

    Article  PubMed  Google Scholar 

  47. Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. USA 99, 673–678, https://doi.org/10.1073/pnas.022628299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldbeter, A. Computational approaches to cellular rhythms. Nature 420, 238–245, https://doi.org/10.1038/nature01259 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Garvey, A. A. & Dempsey, E. M. Applications of near infrared spectroscopy in the neonate. Curr. Opin. Pediatr. 30, 209–215, https://doi.org/10.1097/MOP.0000000000000599 (2018).

    Article  PubMed  Google Scholar 

  50. Thewissen, L. et al. Measuring near-infrared spectroscopy derived cerebral autoregulation in neonates: from research tool toward bedside multimodal monitoring. Front Pediatr. 6, 117, https://doi.org/10.3389/fped.2018.00117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Park, S., Beqiri, E., Smielewski, P., Aries, M. & Clinicca Inaugural state of the union: continuous cerebral autoregulation monitoring in the clinical practice of neurocritical care and anesthesia. Neurocrit Care 40, 855–864, https://doi.org/10.1007/s12028-023-01860-9 (2024).

    Article  PubMed  Google Scholar 

  52. Hyttel-Sorensen, S. et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 350, g7635, https://doi.org/10.1136/bmj.g7635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hansen, M. L. et al. Cerebral oximetry monitoring in extremely preterm infants. N. Engl. J. Med 388, 1501–1511, https://doi.org/10.1056/NEJMoa2207554 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Thewissen, L. et al. Cerebral oxygen saturation and autoregulation during hypotension in extremely preterm infants. Pediatr. Res 90, 373–380, https://doi.org/10.1038/s41390-021-01483-w (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Thewissen, L. et al. Cerebral autoregulation and activity after propofol for endotracheal intubation in preterm neonates. Pediatr. Res 84, 719–725, https://doi.org/10.1038/s41390-018-0160-3 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Gilmore, M. M. et al. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J. Perinatol. 31, 722–729, https://doi.org/10.1038/jp.2011.17 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Chock, V. Y., Ramamoorthy, C. & Van Meurs, K. P. Cerebral autoregulation in neonates with a hemodynamically significant patent ductus arteriosus. J. Pediatr. 160, 936–942, https://doi.org/10.1016/j.jpeds.2011.11.054 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sortica da Costa, C. et al. Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr. Res 86, 247–253, https://doi.org/10.1038/s41390-019-0410-z (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all authors of the included studies, especially those who contributed additional data from their published articles upon request. Authors CLB and BEL were supported by the Junior Scientific Masterclass Groningen MD-PhD programme (MD-PhD 21-36, and MD-PhD 23-17) during the execution of this study. The other authors did not receive any funding. The study was registered in PROSPERO (ID: 427323).

Author information

Authors and Affiliations

Authors

Contributions

Celina L. Brunsch conceptualized and designed the study, conducted data acquisition, analysis and interpretation, drafted the manuscript and approves the final version to be published. Bineta E. Lahr assisted with data acquisition and interpretation, critically reviewed and revised the manuscript and approves the final version to be published. Dr Elisabeth M.W. Kooi supervised the conception and design, data acquisition and analysis, contributed substantially to the interpretation of the findings, critically reviewed and revised the manuscript and approves the final version to be published.

Corresponding author

Correspondence to Celina L. Brunsch.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunsch, C.L., Lahr, B.E. & Kooi, E.M.W. Cerebrovascular autoregulation and preterm brain injury: a systematic review and meta-analysis. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04087-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04087-w

Search

Quick links