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Abstract
Brain white matter abnormalities are evident in individuals with schizophrenia, and also their first-degree relatives,
suggesting that some alterations may relate to underlying genetic risk. The ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 2 (ST8SIA2) gene, which encodes the alpha-2,8-sialyltransferase 8B enzyme that aids neuronal
migration and synaptic plasticity, was previously implicated as a schizophrenia susceptibility gene. This study
examined the extent to which specific haplotypes in ST8SIA2 influence white matter microstructure using diffusion-
weighted imaging of individuals with schizophrenia (n = 281) and healthy controls (n = 172), recruited across five
Australian sites. Interactions between diagnostic status and the number of haplotype copies (0 or ≥1) were tested
across all white matter voxels with cluster-based statistics. Fractional anisotropy (FA) in the right parietal lobe was
found to show a significant interaction between diagnosis and ST8SIA2 protective haplotype (p < 0.05, family-wise
error rate (FWER) cluster-corrected). The protective haplotype was associated with increased FA in controls, but this
effect was reversed in people with schizophrenia. White matter fiber tracking revealed that the region-of-interest was
traversed by portions of the superior longitudinal fasciculus, corona radiata, and posterior limb of internal capsule. Post
hoc analysis revealed that reduced FA in this regional juncture correlated with reduced IQ in people with
schizophrenia. The ST8SIA2 risk haplotype copy number did not show any differential effects on white matter. This
study provides a link between a common disease-associated haplotype and specific changes in white matter
microstructure, which may relate to resilience or risk for mental illness, providing further compelling evidence for
involvement of ST8SIA2 in the pathophysiology of schizophrenia.

Introduction
Schizophrenia and bipolar disorder are severe psychia-

tric conditions, comprising constellations of overlapping

clinical symptoms and shared genetic risk1,2. There is
evidence of both regionally specific and widespread white
matter abnormalities in bipolar disorder3,4 and schizo-
phrenia5,6,7 compared to healthy controls, although there
is some inconsistency among reports of specific white
matter tracts implicated in individual studies. These
inconsistencies are likely owing to a combination of
methodological differences across studies, variation in
power to detect group differences, and heterogeneity at the
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clinical, demographic, and genetic levels within subject
groups.8 Indeed, some cerebral abnormalities may relate
specifically to underlying genetic risk (rather than to dis-
ease state), as evidenced by white matter abnormalities
observed in first-degree relatives of patients9,10, although
non-genetic familial risk factors may also contribute.
A growing number of genes that carry variation asso-

ciated with altered risk of disease have been implicated in
schizophrenia11. Understanding how established genetic
risk variants influence white matter tract formation in
healthy and affected brains is pivotal in dissecting out
sources of heterogeneity in neuroimaging studies focused
on diagnostic group differences, but also in understanding
the complex underlying neurobiology of those disorders.
DNA variations within the ST8 alpha-N-acetyl-

neuraminide alpha-2,8-sialyltransferase 2 gene (ST8SIA2)
have previously shown association with a number of
major psychiatric conditions, including bipolar disorder12,
schizophrenia12–14, and autism15. In addition, loss-of-
function mutations affecting ST8SIA2 have been identi-
fied in individuals with schizophrenia16, and autism
spectrum disorder with epilepsy17.
ST8SIA2 encodes the alpha-2,8-sialyltransferase 8B

enzyme, responsible for the post-translational addition of
polysialic acid (PSA) onto proteins, principally the neuronal
cell adhesion molecule (NCAM1) during early brain
development18,19, enabling neuronal migration, dendrite
formation, axon targeting, and synaptic plasticity20. Obser-
vations of altered PSA-NCAM in brains of patients with
schizophrenia, bipolar disorder, major depression, and
drug-refractory temporal lobe epilepsy indicate a functional
dysregulation of the glycosylation process in mental ill-
ness21–26. This notion is supported by pharmacological data
in rats, in which expression of PSA-NCAM is modulated by
treatment with common antipsychotics27–29.
Mouse knockout studies show evidence of cerebral

changes in animals developing without glycosylated
NCAM, including the size of the anterior commissure and
midline-crossing fibers, ventricular dilatations, size reduc-
tions of the internal capsule, and disorganized pattern of
fibers30,31. In addition, st8sia2-deficient mice (st8sia2−/−)
exhibit schizophrenia-like behaviors, including cognitive
dysfunction, deficits in prepulse inhibition, and increased
sensitivity to amphetamine-induced locomotion31. These
animal models suggest that cerebral changes may also be
observed in humans with specific ST8SIA2 risk alleles,
albeit with more subtle abnormalities relating to less severe
genetic defects, which may include alterations in the
organization of white matter brain connectivity.
Therefore, in the current study, we aimed to examine

the extent to which ST8SIA2 influences white matter
structure in a human cohort, comprising both people with
schizophrenia and healthy controls. As no single common
functional ST8SIA2 mutation has been identified16,32, we

focused on a specific 54-kb linkage disequilibrium block
encompassing the promoter to intron 2, which contained
two common haplotypes previously identified as carrying
“risk” or “protective” alleles12. Individuals were grouped
both according to diagnosis and the presence of either the
risk or protective haplotype. We then tested across all
white matter voxels whether fractional anisotropy (FA)—
a measure of white matter microstructure—was modu-
lated by the interaction between haplotype and diagnosis.
The presence of a significant interaction was tested across
all white matter using an unbiased, data-driven method,
thereby investigating the differential influence of ST8SIA2
haplotypes on white matter structure in healthy controls
and in people with schizophrenia.

Materials and methods
Participants
Participants were 18–65 years of age and included

patients with established schizophrenia (n= 281) and
healthy controls (n= 172) recruited from five sites in
Australia under the auspices of the Australian Schizo-
phrenia Research Bank33 (Ethics Committee approval by
University of New South Wales HREC/08 and Hunter
New England Human Research Ethics Committee HNE/
438). All participants provided written informed consent
for the analysis of their data. A diagnosis of schizophrenia
or schizoaffective disorder was determined using DSM-IV
diagnostic criteria34,35. Current Intelligence Quotient (IQ)
estimates were obtained using the Wechsler Abbreviated
Scale of Intelligence36.
Exclusion criteria were as previously described33,37, and

included a history of organic brain disorders, brain injury
(followed by amnesia for >24 h), movement disorders, a
current diagnosis of drug or alcohol dependence, or
electroconvulsive therapy in the past 6 months. Healthy
controls were also excluded if they had a familial or
personal history of psychosis or bipolar I disorder.
Ethnicity was determined by a combination of: (1) self-

report, based on grandparental country of birth; (2)
genotype-derived principle components analysis, where
GWAS data were available37 (n= 333, 68% of sample;
Supplementary Information), and was largely European
(88.1%) or mixed-European (7.0%; Supplementary Table S1).

Genotyping
Putative risk and protective haplotypes12 were defined

by four single nucleotide polymorphisms (SNPs) located
toward the 5’ end of ST8SIA2 (Fig. 1). Lymphocyte-
derived genomic DNA underwent PCR amplification
using Taqman probes to generate genotypes for each
SNP, and haplotypes were phased using PLINK38 (Sup-
plementary Information).
For seven subjects where phasing was deemed unreli-

able (posterior probability <0.75), imputed data from
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Infinium Human 610 K BeadChips37 were used (Supple-
mentary Information), for whom the average posterior
probability-phased haplotypes was 0.843. Haplotype
association with diagnosis was performed in PLINK38

using --hap-logistic, including ethnicity as a covariate.

Image acquisition
Diffusion-weighted magnetic resonance images (DWI)

were acquired in each participant with a Siemens Avanto
1.5-Tesla system (Siemens, Erlangen, Germany) across
five sites in Australia, with the same acquisition sequence
used across all sites. Sixty-four gradient-weighted volumes
distributed on the half-sphere were acquired using a spin-
echo EPI sequence as follows: b-value= 1000 s/mm2; 65
consecutive axial slices (thickness 2.4 mm); 104× 104
image matrix with an in-plane voxel resolution of 2.4×
2.4 mm; field of view= 25× 25 cm; repetition time= 8.4/
8.5 s; echo time= 88ms; flip angle= 90 degrees.

Image preprocessing
DWI images were corrected for EPI distortions and head

movement with affine registration to the non-diffusion-
weighted volume in FSL 5.0.7 (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/). Gradient tables were rotated to correct for head
movement using MATLAB v2011a (MathWorks, Natick,
MA, USA). Diffusion tensors were then fitted to each voxel
using least squares estimation, enabling generation of a FA
image for each individual in MRtrix 0.2.12 (http://www.nitrc.
org/projects/mrtrix/). FA is a voxel-wise measure that
reflects the degree to which water diffusion is restricted to
particular directions. FA is influenced by microstructural
properties and organization of white matter fibers including
axons, their myelin sheath, and the surrounding extracellular
matrix39. Each FA image was normalized to Montreal
Neurological Institute (MNI) standard space using a non-
linear registration procedure (FLIRT and FNIRT with
default parameters as implemented in FSL 5.0.7). Quality
control included careful manual inspection of each FA
image for gross abnormalities and/or registration failure.
Streamlines were seeded throughout all of white matter and
propagated using a deterministic white matter fiber tracking
algorithm in MRtrix 0.2.12 (Supplementary Information).

Statistical analysis
A two-way analysis of variance was used to test for

interactions between diagnostic status (patient or control)

Fig. 1 Position of genotyped SNPs within the ST8SIA2 gene, and phased haplotypes. The haplotype block structure across the entire ST8SIA2
gene (chr15:92,910–92,995 Mb; hg18) is shown, determined from 174 European (CEU, GBR) individuals from phase 1 of the 1000 Genomes project
(MAF > 0.2). ST8SIA2 gene structure is shown above, with black bars indicating exon positions and the promoter region lying in the 5’ direction.
Relative LD strength is indicated by strength of red coloring, whereby dark red indicates high LD (D’ > 0.8). Blue arrows indicate position of SNPs
genotyped in the current study (rs4586379, rs2035645, rs4777974, and rs3784735). The main haplotypes (frequency > 0.05) defined across the four
genotyped SNPs are shown in the inset, alongside their observed frequencies (freq). The TTGA and CGAC haplotypes (indicated in the red and green
boxes, respectively) correspond to the previously identified “risk” and “protective” haplotypes, as reported in McAuley et al.12
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and the number of haplotype copies (0, 1 or 2) at each
white matter voxel. FA was the dependent variable, and
independent variables were the main effects of diagnosis
and haplotype, the interaction between these two main
effects, and the nuisance covariates of scanning site, age,
and gender. The main effect of haplotype was modeled in
two ways: (1) additively, such that two haplotype copies
were assumed to have double the effect of one haplotype
copy over no copies; and (2) dominantly, pooling together
individuals with one or two haplotype copies to form a
single group. The latter approach accounted for the
rareness of individuals with two haplotype copies. This
model was independently fitted at all white matter voxels.
Whole-brain correction for multiple comparisons (across
all white matter voxels) was conducted using Randomise
(FSL 5.0.7), a non-parametric cluster-size-based proce-
dure40,41, which avoids inflation of false-positives42. A
primary t-statistic threshold of 2.5 was used. Corrected p
values for each cluster were calculated based on 10,000
permutations, and two-sided p values< 0.05 were con-
sidered significant. Post hoc analysis methods are descri-
bed in Supplementary Information.

Results
The four SNPs defining the risk and protective haplo-

types previously identified12 (Fig. 1), each had a geno-
typing rate of >98%. All SNPs passed tests for
Hardy–Weinberg equilibrium in control subjects. After
haplotype phasing, 39 subjects (20 cases, 19 controls)
were excluded due to low posterior probability of phased
haplotypes, given the observed genotypes (<0.70). In total,
453 subjects (281 cases, 172 controls) had both high-
quality FA images and confidently phased haplotypes
(average posterior probability was 0.961; Table 1).
There was no significant difference in frequency of

common haplotypes (frequency > 0.05) in controls vs.

patients (omnibus Wald T= 0.122, df= 3, p= 0.989), nor
was there altered frequency of the specific risk (χ2= 0.616,
df= 1, p= 0.432) or protective haplotypes (χ2= 0.002, df
= 1, p= 0.967) with diagnostic group. There were no
significant differences in age, gender, handedness, or IQ in
carriers vs. non-carriers of either risk or protective hap-
lotypes in either diagnostic group. The schizophrenia
group had significantly more males, a lower median IQ
score (Table 2 and Supplementary Figure S1), and wide-
spread reductions of FA compared to controls6.
Individuals (n= 453) were grouped according to diag-

nosis, and the presence of either the risk or protective
haplotype. No significant main effects of risk or protective
haplotype on FA were observed (p> 0.5). In two separate
analyses for each haplotype, we then tested whether FA
was modulated by the interaction between haplotype and
diagnosis. The number of copies of the ST8SIA2 risk
haplotype (TTGA) did not show any differential effects on
white matter with diagnosis. However, the ST8SIA2 pro-
tective haplotype (CGAC) was found to have a differential
effect on right hemisphere parietal white matter in
patients with schizophrenia, and was significant for both
the pooled and additive modeling approach (whole brain-
corrected p< 0.05, 804 voxels; Fig. 2 and Supplementary
Figure S2, respectively). The interaction effect was
stronger when subjects of Asian or unknown ancestry
were excluded (n= 401; dominant model p= 0.0052,
2401 voxels; Supplementary Figure S3).
The anatomical location of the significant right hemi-

sphere interaction extended between the right superior
longitudinal fasciculus (SLF) and the posterior limb of the
internal capsule, with a peak t-statistic voxel located in the
superior corona radiata (MNI mm: 23, −22, 20; Fig. 2, left
panel). The protective haplotype was associated with
increased FA in this region in controls, but decreased FA
in the patient group. This was confirmed with post hoc
testing using mean FA values averaged across all voxels in
the region showing the significant interaction effect
(Fig. 2, right panel). The cluster was slightly more sig-
nificant (p= 0.036, 876 voxels) when five patients with IQ
> 2 S.D. outside the group mean (mean= 103.3, S.D.=
15.7) were excluded (data not shown). The mean FA was
significantly greater in patients compared to controls in
individuals with no copies of the protective haplotype.
Conversely, the mean FA was significantly greater in
controls compared to patients with one or more copies of
the protective haplotype. To identify the axonal fiber
bundles associated with the interaction effect, white
matter fiber tracking was performed by initiating
streamlines from all white matter voxels, but retaining
only those passing through the region. The set of 1000
reconstructed streamlines that intersected the cluster
(Fig. 3) shows that the region of the significant interaction
effect is traversed by portions of both corticocortical

Table 1 Breakdown of haplotype status by diagnostic
group

TTGA “risk”

haplotype

CGAC

“protective”

haplotype

Total

Number of haplotype copies 0 1+ (2) 0 1+ (2)

Case 115 166 (36) 207 74 (9) 281

Control 64 108 (17) 127 45 (5) 172

Total 179 274 (53) 334 119 (14) 453

Subjects with 0 copies of the “risk” or “protective” haplotypes have one of seven
other haplotypes on both chromosomes, namely, TGAC, TGAA, TTAC, CGAA,
CTGA, TGGA, or TTGC. Subjects with 1+ copies represent subjects with one or
more copies of the relevant haplotype, and homozygotes for each haplotype (2
copies) shown in parentheses. Subjects with one copy of the relevant haplotype
may have any other haplotype on the alternate chromosome, including subjects
who have one copy of both risk and protective haplotypes (n = 26 cases, 21
controls)
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white matter tracts (i.e., SLF) and corticosubcortical white
matter tracts (i.e., corona radiata and posterior limb of
internal capsule). In the ethnicity-restricted analysis
(excluding 52 subjects of Asian or unknown ancestry), the
significant interaction region extended more caudally,
descending from the SLF and corona radiata to the cer-
ebral peduncles (midbrain), passing through the posterior

limb of the internal capsule (Supplementary Figure S4).
The interaction effect, therefore, appears to be associated
with a regional juncture of multiple fiber bundles,
including both association and projection fiber bundles.
Finally, we conducted a post hoc examination of the

relationship between the mean FA within the region-of-
interest (FA-ROI) and IQ, as cognitive impairment is a

Table 2 Demographics, clinical variables, and protective haplotype (CGAC) carrier status

Controls Patients Controls vs.

Patients

CGAC “protective”

haplotype copies

All

(n = 172)

0 copies

(n = 127)

1 + copies

(n = 45)

Carrier vs.

non-carrier

All

(n = 281)

0 copies

(n = 207)

1 + copies

(n = 74)

Carrier vs.

non-carrier

X2 = 0.002

(p = 0.967)

Age 41.5 (18–64) 42 40 U = 2762 38 37 38.5 U = 7452 U = 22,208

(18-64) (18–64) (18–62) (p = 0.739) (20–65) (20–65) (20–63) (p = 0.729) (p = 0.147)

Sex (males; females) 87; 85 69; 58 18; 27 X2 = 2.73 196; 85 147; 60 49; 25 X2 = 0.595 X2 = 16.72

(p = 0.098) (p = 0.44) (p = 4.3 ×

10−5)

Handedness 90 90 90 U = 2729 100 100 100 U = 7626 U = 21,856

(p = 0.635) (p = 0.952) (p = 0.066)

WASI 119 118 121 U = 2475 104 105 103.5 U = 7051 U = 11,645

(80–138) (80–138) (88–134) (p = 0.182) (58–133) (58–132) (63–133) (p = 0.311) (p = 2.0 ×

10−20)

Diagnostic (SCZ;

SAD; SAB)

— — — 176; 18; 13 63; 6; 5 X2 = 0.041

(p = 0.979)

—

DSM-IV diagnostics (SCZ schizophrenia; SAD schizoaffective disorder of depressive type, SAB schizoaffective disorder bipolar type); handedness as measured by
Edinburgh Handedness Scale, a continuous laterality quotient scaled from −100 to +100, where negative values indicate propensity for left-handedness and ±100
indicates unilaterality; WASI Wechsler abbreviated scale of intelligence; “Carrier” refers to carrier of CGAC “protective” haplotype; if not otherwise specified, the values
represent the median and the range is given in brackets; statistically significant differences (p < 0.05) are indicated in bold

Fig. 2 Differential effect of ST8SIA2-protective haplotype on fractional anisotropy in healthy controls and subjects with schizophrenia. The
pink cluster (804 voxels) located on the right corona radiata and the superior longitudinal fasciculus represents voxels showing a significant
interaction between ST8SIA2 protective haplotype and diagnosis of schizophrenia on fractional anisotropy. MNI coordinates are given on the top of
each slice. The cluster is significant at the whole brain level (corrected p = 0.04, family-wise error rate-corrected). The Tukey Box-And-Whiskers plot
represents the distribution of the mean FA values extracted from the pink cluster, with whiskers representing 1.5 interquartile range. Healthy controls
(HC, n = 172, blue) and subjects with schizophrenia (SCZ, n = 281, red) carrying one or two copies (1) or no copy (0) of the ST8SIA2-protective
haplotype are shown. Results of the post hoc tests are indicated: *p < 0.05; **p < 0.01
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core component of schizophrenia that may be causal43.
Although age was included as a covariate in primary
analyses, age has been shown to significantly affect FA44;
thus, we explicitly examined effects of age on FA-ROI.
Regression analysis revealed a significant positive correla-
tion between FA-ROI and IQ in Caucasian people with
schizophrenia (t= 2.276; df= 7,227; p= 0.024), but no
significant relationship with IQ in controls (t= 1.633; df=
7,122; p= 0.105). When haplotype was included in the
model, both IQ and haplotype were significant predictors
on FA-ROI in people with schizophrenia (t= 2.197; df=
8,227; p= 0.029, and t= 2.144; df= 8,227; p= 0.033,
respectively), whereas haplotype (t=−4.93; df= 8,122; p
= 0.0006) but not IQ was significant in controls (Supple-
mentary Figure S5). Therefore, reduced FA in this regional
juncture may negatively impact IQ in people with schi-
zophrenia. There was a significant effect of age on FA-ROI
in controls (p= 5.6× 10−5, with a 5.9× 10−4 unit reduc-
tion of FA for each year increase), with a trend effect in
cases (p= 0.059, of −3.4× 10−4 units/year). However,
interactions between age, diagnosis, and haplotype were
not significant.

Discussion
Determining the link between the inheritance of specific

genetic factors that influence risk of developing mental
illness and their effects on neuroanatomy or brain

function is pivotal to understanding the neurobiological
mechanisms underlying the development of mental ill-
ness. This study shows that a haplotype in ST8SIA2,
previously reported to be “protective”12, influences white
matter microstructure in a regional juncture of associa-
tion and projection fibers in the right parietal lobe. Fur-
thermore, reduced FA in this region is associated with
reduced IQ in schizophrenia patients, a core component
of the schizophrenia phenotype43. This study provides an
important link between human disease-associated genetic
variants in ST8SIA2 and specific brain deficits, providing
further compelling evidence for involvement of this
replicable12,13,15,45,46 and functionally relevant20,30,47 can-
didate gene in the pathophysiology of schizophrenia. To
our knowledge, this is the first investigation of the dif-
ferential effects of specific ST8SIA2 genetic variants on
brain white matter microstructure in patients with
schizophrenia.
In the current study, we focused our analysis on two

specific common haplotypes that were previously defined
in independent cohorts with bipolar disorder or schizo-
phrenia as “risk” (i.e., over-represented in case subjects
compared to controls), or “protective” (i.e., over-
represented in control subjects compared to cases).12 In
a population, each individual carries two haplotypes from
a pool of many possible haplotypes present in the popu-
lation, and each haplotype block—typically defined by
common SNP variants—can carry additional rare varia-
tion, which is in incomplete linkage disequilibrium with
the tagging SNPs, making that haplotype unique. While
the specific genetic variants affecting ST8SIA2 gene
function in schizophrenia are largely unknown (with the
exception of the rare functional missense variant E141K
(rs545681995)13,16), evolutionary theory suggests that
both common and rare variation may contribute to phe-
notypic variability48, and this putative functional variation
may have arisen on a spectrum of haplotypes32. Our
analysis did not consider the identity of the second or
“other” haplotype carried by each subject, which likely
harbors a different spectrum of putative functional var-
iation32. Hence, it is possible that the results we observe
are influenced by the composition of “other” haplotypes
within each group, or variants that are incompletely tag-
ged by the variants examined, and this must be kept in
mind with regards to interpretation of the findings. We
note that the frequency of previously identified disease-
associated ST8SIA2 haplotypes12 did not differ with
diagnosis in this independent cohort, which may be a
consequence of reduced power of this neuroimaging
sample for detecting significant genetic association.
We observed that the ST8SIA2 “protective” haplotype is

associated with an increase in FA in control subjects in a
regional juncture of multiple fiber bundles, encompassing
the SLF, corona radiata, and the posterior limb of the

Fig. 3 Involvement of the superior longitudinal fasciclus and
corona radiata. Tractography was performed for a representative
control to delineate the white matter fiber bundles traversing the
region associated with the significant protective haplotype ×
diagnostic group interaction (yellow), which was derived from all
subjects (n = 453). The dominant fiber bundles are the superior
longitudinal fasciculus (horizontal fibers, mostly green) and the corona
radiata (vertical fibers, mostly blue)
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internal capsule. As such, modifications of white matter
microstructure in this region may result in distributed
network effects spanning multiple cortical and subcortical
systems. Conversely, we observe an inverse effect of the
“protective” haplotype in schizophrenia patients, where
the haplotype is associated with reduced FA in the same
region. The haplotype therefore appears to lose its “pro-
tective” effect in schizophrenia.
This apparent disparity may reflect the complex inter-

play between ST8SIA2 and other genes that (individually
or in concert) influence axonal fiber microstructure.
Alternatively, these results may be explained in the con-
text of a differential susceptibility model49, whereby a
specific allele (or haplotype) of a gene can have either a
beneficial or adverse effect, depending on the environ-
mental condition in which it is measured. This differential
susceptibility to environmental influence has been
demonstrated previously for other genes and pheno-
types50, and may also be relevant for ST8SIA2. However,
as we did not formally test for specific gene × environ-
ment interactions in the current study, this explanation
should be considered speculative.
We note that we did not observe an effect of the “risk”

haplotype on white matter in this study. This was some-
what unexpected, given the observed significant effect of
the protective haplotype—one might expect to see a
concomitant reduction in FA in carriers of the risk hap-
lotype. However, it may be that the specific genetic var-
iants tagged by the risk haplotype are less penetrant in
effects on white matter and thus would require larger
samples to elucidate.
Previous research examining diagnostic group differences

in FA has shown alterations affecting multiple cortical areas
in schizophrenia5. In a previous analysis in the current
cohort, individuals with schizophrenia had widespread
reductions in FA compared to healthy controls6. Reduced
FA in the SLF is not unique to chronic schizophrenia, but
has also been found in individuals with first-episode psy-
chosis51–55, bipolar disorder56–60, and autism61–64. The
specific effect of ST8SIA2 haplotype on this association fiber
tract, in combination with data indicating that variation in
ST8SIA2 confers increased risk to (or protection against)
each of these disorders12,13,15,45 is consistent with the link
between ST8SIA2 and the pathophysiology (or lack thereof)
of a number of major psychiatric conditions.
The SLF is the largest association fiber bundle that

mediates intrahemispheric corticocortical connections
between frontal, temporal, and parietal lobes65,66.
Although the exact role of the SLF is still largely
unknown, the right bundle seems to be involved in
visuospatial awareness67 and attention68, two functions
that are impaired in patients with schizophrenia.
The corona radiata and posterior limb of the internal

capsule contain white matter tracts connecting the cortex

with subcortical regions including the thalamus (e.g.,
thalamocortical), brainstem (e.g., corticopontine), and
spinal cord (e.g., corticospinal). Interestingly, the
internal capsule has also shown reduced volume and
disorganized pattern of fibers in mouse st8sia2 knockout
studies30,31.
Recent findings by Piras et al.69 further support the rele-

vance of ST8SIA2 to the SLF. They examined the relation-
ship between PSA-NCAM (or polySia-NCAM) serum
protein levels and human brain structure in healthy controls
and schizophrenia patients with both structural MRI and
DTI data. PSA-NCAM is formed by the addition of poly-
sialic acid (polySia) chains on NCAM1 by poly-
sialyltransferase enzymes (encoded by ST8SIA2 and
ST8SIA4), and NCAM1 is the major polySia carrier70,71.
Intriguingly, they identified a significant positive relationship
between peripheral PSA-NCAM protein levels and Brod-
mann area 46 (BA46) volume in healthy controls, and the
inverse relationship in this same region of the dorsolateral
prefrontal cortex in people with schizophrenia (i.e., reduced
volume in BA46 with increased serum PSA-NCAM)69.
This is somewhat consistent with our findings involving

the SLF in two ways. Firstly, the prefrontal region
encompassing BA46 is one of the termini of the SLF—
hence, one could expect to see alterations in gray matter
in regions associated with affected white matter tracts5.
Secondly, we also observed an inverse relationship in
healthy controls as compared to people with schizo-
phrenia with the protective haplotype. It must be noted,
however, that, while PSA-NCAM formation will be
influenced by the expression of the ST8SIA2 gene and the
activity of its resultant protein, PSA-NCAM protein levels
will also reflect expression and activity of ST8SIA4, the
alternative long-chain alpha-2,8 polysialic acid enzyme71–73,
as well as the availability of glycosylatable NCAM1 iso-
forms (namely NCAM-140 and NCAM-180), which are
differentially regulated over development73 (refs. 20,71).
This indirect and confounded measure of ST8SIA2 may
partly explain why Piras et al.69 did not find effects of
serum PSA-NCAM protein levels on FA measures. The
smaller sample size (n= 45 matched pairs) may also have
contributed to their negative finding.
Together with previous work, the current study shows

enticing data supporting the implication of ST8SIA2
genetic variants in schizophrenia, and, notably, informs a
potential mechanism for the protection against major
mental illness in healthy individuals. Indeed, ST8SIA2
should be considered a “plasticity gene”49 rather than a “risk
gene” for two reasons. Firstly, it appears that the mechan-
ism of association of the disease-associated haplotype may
operate via the protective effect of the CGAC haplotype in
resilient individuals (i.e., reducing risk to mental illness via
modifications of white matter) rather than necessarily
relating directly to the risk for specific psychopathological
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conditions (i.e., schizophrenia, autism, and bipolar disorder
—as evidenced by altered allelic frequency when compared
to a control population group12,13,15,45,46). Secondly, we
know that ST8SIA2 has direct effects in the developing
vertebrate nervous system, as well as being involved in
plasticity-related responses in adulthood20.
Finally, it must be noted that our analysis does not take

into account the variation in the many other genes that also
contribute risk of schizophrenia, which is a limitation of the
current study, as it is with all gene-centric functional ana-
lyses. Furthermore, while FA is the most well-established
and widely used neuroimaging measure reflecting axonal
fiber density, diameter, and myelination74, it is a relatively
indirect measure of white matter connectivity. Reductions
in FA can also be a marker of intersecting fiber bundles, as
DTI is prone to errors in resolving fiber crossings75.
Therefore, independent validation of our findings utilizing
alternative methods assessing fiber tract integrity is neces-
sary. While future meta-analytic and mega-analytic repli-
cation studies are vital, this is currently challenging due to
the difficulties in combining tractography findings across
different sites, which will require the development of
sophisticated harmonization protocols.
Recent data from mouse models suggest that the

variability in FA observed in the human cohort is likely
not an artifact of fiber crossings but a true reflection of the
pathology in carriers of this haplotype. Mice lacking
st8sia2 have impairments in oligodendrocyte maturation,
resulting in thinner myelin sheath and nerve fibers, which
degenerate with age76, and downregulation of proteins
involved in myelination processes (e.g., myelin basic
protein, myelin proteolipid, and myelin-associated glyco-
protein). Furthermore, in st8sia2-deficient mice, upregu-
lation of proteins expressed from other genes implicated
in the pathogenesis of bipolar disorder and schizophrenia
(e.g., the Neurocan core protein, NCAN77,78) implies
downstream dysregulation of additional disease-
associated genes in the absence of st8sia2.
In conclusion, this study provides a link between a

common haplotype in ST8SIA2 and changes in white
matter microstructure in resilience against or risk of
schizophrenia, providing further compelling evidence for
involvement of this “plasticity” gene in the pathophysiol-
ogy (or lack thereof) of this complex, heterogeneous and
polygenic disorder. Further studies into the effects of
ST8SIA2 genetic variants on white matter microstructure
in schizophrenia and other psychiatric conditions—as
well as resilient control populations—are warranted.
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