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Abstract
Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via
epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on
epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that
variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we
extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their
additive (G+ CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts
with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA,
which was assessed retrospectively using self-reports or verified through social services and registries. For the majority
of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G+ CA or G × CA but almost never
by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with
G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific
transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes
showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant
genes. This underscores the importance of including genotype in studies investigating the impact of environmental
factors on epigenetic marks.

Introduction
Childhood adversity (CA), including child abuse and

neglect, is a major risk factors for the development of
stress-related psychiatric and other medical disorders

later in life1–4. Exposure to CA is not only associated with
disease risk, but also with a number of lasting biological
and physiological changes, including alterations in brain
structure, function, and connectivity5, stress response6,
and immune function7.
DNA methylation (DNAm) has been proposed as a

biological process by which early-life adversity may have
lasting effects on gene transcription providing a molecular
mechanism for how early environment could influence
health outcomes later in life8,9. A number of studies have
investigated DNAm changes with exposure to CA in
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peripheral tissues, such as saliva or blood, either using
candidate gene approaches or genome-wide DNAm stu-
dies (EWAS). Overall, while there is some evidence for the
association between CA and altered patterns of DNAm,
results for individual DNAm targets remain inconsistent10.
The majority of autosomal CpGs (about 80%) are not

variable across tissues and individuals11,12, leaving only
about 20% of CpG sites that may contribute to differences
in phenotypes and health13. These variable CpGs are of
specific interest as they are enriched for functionally
relevant genomic regions, associated with effects on gene
expression12. In contrast to CA, genetic factors have been
shown to have replicable influences on DNAm variability.
The impact of genetic variation, especially of single-
nucleotide polymorphisms (SNPs), on DNAm in different
tissues, has been investigated in many studies and a large
number of methylation quantitative trait loci (SNPs sig-
nificantly associated with DNAm status14) have been
discovered which are relatively stable throughout the life
course15.
Environmental factors and genetic factors may thus act

in concert to influence DNAm, however only a few studies
have investigated the joint effects of environment and
genotype on DNAm variability. In the context of the
influence of prenatal environments on DNAm at birth,
Teh et al.16 as well as our group17 reported that combined
effects of genotype and prenatal environment explain
most of the variance in umbilical cord and cord blood
DNAm. In fact, environment alone was almost never the
strongest driver, rather additive or interactive effects of
genotype (G) and environment (E) explained DNAm
variability best in the majority of CpGs. This may be
specific of prenatal environments, where there is less time
for exposure.
Here, we aimed to expand the analysis of combined G

and E effects to a postnatal stressor (CA). We examined
if, similar to our results in neonates, combined effects
are also stronger drivers of DNAm variation later in life
and if the proportion of explained variance varies with
time to exposure, i.e., whether effects of CA measured in
childhood are qualitatively or quantitatively different
than when measured later in life. For this purpose, we
systematically tested main effects of CA (E= CA) and
genotype located in a 1 MB window of the CpG (G) on
DNAm as well as their additive (G+ CA) and multi-
plicative effects (G × CA). For each tested CpG site, we
sought the model that explained most of the DNAm
variability. We explored this in five independent cohorts
with a total of 1074 individuals, of whom 541 were
exposed to CA. The five cohorts ranged in age from
early childhood (3–5 years of age) to elderly individuals
(mean age of 64 years) with both retrospective self-
reports of CA and verified exposures by registries or

social services. This enabled us to test for the stability of
G and CA effects with age as well as across different
types of assessment of exposure.

Methods
Samples
Five independent cohorts were included in our analysis:

GRADY, PReDICT, U19, BerlinLCS, and HBCS. All
subjects (or their legal guardians) gave written informed
consent and ethical approval was given by the Institu-
tional Review Board or Ethical Committee of each site
participating in every study. Register linkage has been
conducted with permission from the register authority
(HBCS: the Finnish National Archives).
The GRADY cohort consisted of 309 participants who

were recruited as part of the GRADY Trauma Project at
the Grady Memorial Hospital in Atlanta, Georgia18. All
participants come from an urban population with low
socioeconomic status and are characterized by high pre-
valence and severity of trauma over lifetime19–21.
The PReDICT cohort consisted of 363 treatment-naive

patients who met criteria for current major depressive
disorder. All participants were recruited at three Atlanta
sites associated with the Emory University School of
Medicine, Department of Psychiatry and Behavioral
Sciences22.
The U19 cohort consisted of 78 nonmedicated women

recruited at four academic sites in the USA (Emory
University, Icahn School of Medicine at Mount Sinai,
Baylor College of Medicine, University of California San
Francisco/San Francisco Veterans Affairs Medical Cen-
ter). All U19 participants were untreated and had to fulfill
criteria for post-traumatic stress disorder (PTSD) for at
least 3 months23.
The BerlinLCS cohort consisted of 173 children, who

were recruited via child care centers, child and youth
social services, child psychiatric departments, or pedia-
tricians. Children were followed for 2.5 years with
extensive psychometric and biological assessments. In
addition, DNA from saliva samples was collected at five
time points over the course of the study (every 6 months).
Cases were victims of one or more of the following:
physical abuse, physical neglect, and/or emotional mal-
treatment (MT) requiring intervention by social services.
The Helsinki Birth Cohort Study (HBCS)24–26 consisted

of 77 men who were evacuated to Sweden or Denmark
unaccompanied by their parents during the Second World
War according to the Finnish National Archives’ regis-
ter27. The controls were 74 men who were not evacuated,
and who were matched to cases for birth year and father’s
occupational status. These men donated blood for DNA
samples in a clinical study in 2001–2004. Information on
these five cohorts is summarized in Table 1.
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DNAm data
DNAm was measured by Illumina Infinium Human-

Methylation450K BeadChips in GRADY, PReDICT, U19,
and HBCS and by the InfiniumMethylationEPIC BeadChip
for BerlinLCS (for this study we focused on the baseline
methylation levels). Beta values were normalized using
functional normalization28,29. Batch effects were removed
using ComBat30 with the sva package31. Subsequently, all
CpGs on sex chromosomes and CpGs with SNPs in the
probe sequence were removed. In addition, probes were
removed if the detection p value was >0.01 in at least 25%
of the samples, the probe contained SNPs in the single base
pair extension or CpG position, the probe had missing beta
values, or was a cross-reactive probe32. The Houseman
method was used to estimate blood cell type composi-
tion33. Saliva cell counts for the BerlinLCS cohort were
computed according to Smith et al.34. Smoking scores in
each cohort were calculated as described by Elliott
et al.35,36. For the BerlinLCS cohort, we computed a pre-
natal smoking exposure according to Richmond et al.37.

Genotype data
DNA isolation and SNP genotyping
In all cohorts, except BerlinLCS, DNA was isolated from

blood samples (GRADY: using either the ArchivePure
DNA Blood Kit (5 Prime, Gaithersburg, MD, USA) or E.Z.
N.A. Mag-Bind Blood DNA Kit (Omega Bio-tek, Nor-
cross, GA, USA), U19: using the PerkinElmer Chemagic
360 extraction robot). In BerlinLCS, DNA was isolated
from saliva samples. Genome-wide SNP genotyping was
performed using Illumina OmniQuad (GRADY), Huma-
nOmniExpress BeadChips (PReDICT and U19), Illumina
GSA-24 v2.0 BeadChips (BerlinLCS), and Illumina 610k
chips (HBCS, modified Illumina 610k chip by the Well-
come Trust Sanger Institute, Cambridge, UK).

Quality control and imputation
Quality control was performed in PLINK38 indepen-

dently in all cohorts. Samples with low genotyping rate

(<98%) were removed. SNPs with high rate of missing data
(>2%), significant deviation from the Hardy–Weinberg
equilibrium (HWE, p < 10−5), or a low minor allele fre-
quency (MAF < 5%) were excluded from further analyses.
Afterward, additional SNPs were imputed using IMPUTE
v239, the 1000 Genomes phase III sample served as
reference panel40. Imputed SNPs with a low information
content metric (<0.8), significant deviation from the HWE
(p < 10−5), or low MAF (<5%) were excluded. In the HBCS
cohort, genomic coverage was extended by imputation
using the 1000 Genomes Phase I integrated variant set (v3/
April 2012; NCBI build 37/hg19) as the reference sample
and IMPUTE v2. Before imputing, the following quality
control filters were applied: SNP clustering probability for
each genotype > 95%, call rate > 95% for individuals and
markers (99% for markers with MAF < 5%), MAF > 1%,
and HWE p > 10−06. Moreover, heterozygosity, sex check,
and relatedness checks were performed and any dis-
crepancies were removed. Imputed genotype probabilities
were converted into best-guessed genotypes using a
threshold of 0.90. SNPs were pruned to a reduced subset
of approximately independent SNPs using a repeated
sliding window (window size of 100 kb, 5 kb shift at the
end of each step) procedure with a pairwise SNP R2

threshold of 0.238.

Environmental data
Self-reported childhood trauma: childhood trauma
questionnaire (CTQ)
The CTQ is a psychometrically validated assessment of

physical, sexual, and emotional child abuse and neglect,
using 28 self-report items41. Participants in GRADY,
PReDICT, and U19 were classified into three groups
based on established cutoff scores for moderate-to-severe
exposure levels for each type of childhood abuse (CA; ≥10
for physical abuse, ≥8 for sexual abuse, ≥13 for emotional
abuse)41. The first group of participants scored in the
none-to-mild range for sexual, emotional, and physical
abuse and was classified as negative for exposure, the

Table 1 Demographic overview of cohorts.

Cohort Na Mean age (SD) Sex (male) Ethnicity Assessment of CA CA Na (%) Tissue Methylation array

GRADY 309 42.08 (12.92) 25.56% African American Self-report 148 (47.90%) Whole blood 450K

PReDICT 363 39.83 (11.50) 39.67% Mixed Self-report 164 (45.18%) Whole blood 450K

U19 78 39.27 (12.10) 0.00% Mixed Self-report 66 (84.62%) Whole blood 450K

BerlinLCS 173 4.23 (0.79) 52.60% Caucasian Documented 86 (49.71%) Saliva EPIC

HBCS 151 63.5 (2.8) 100% Finnish Documented 77 (51.00%) Whole blood 450K

In GRADY, PReDICT, and U19 CA refers to moderate-to-severe ranges of CTQ scores for either sexual, physical, or emotional abuse (GRADY n= 77, PReDICT n= 79, U19
n= 14) or to moderate-to-severe scores in at least two abuse groups (GRADY n= 71, PReDICT n= 85, U19 n= 52), in BerlinLCS CA refers to maltreatment and in HBCS
to evacuation and separation from parents in World War II.
SD standard deviation, CA childhood adversity.
aN= sample size.
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second group scored in the moderate-to-severe range for
either sexual, physical, or emotional abuse, and the third
group scored moderate-to-severe in at least two abuse
groups.

Verified childhood trauma
For BerlinLCS, maltreated (physical abuse, physical

neglect, or emotional MT) children were recruited via
child welfare offices, child and youth social services, child
psychiatric departments, or pediatricians and corrobora-
tion/details of MT exposure was obtained by caretaker
report. Assessment and coding of maltreatment was based
on42 Of the 173 children, 86 were victims of MT. The 87
children in the control group presented with no MT, and
no other significant stressors as assessed with the pre-
school age psychiatric assessment43.

Childhood adversities in the HBCS
In the HBCS sample that was used for this study, 77

individuals had been evacuated to Sweden or Denmark
unaccompanied by their parents during the Second World
War according to the Finnish National Archives’ register.
This experience was used as CA in comparison to the
other 74 individuals of the sample, who had not been
evacuated.

Statistical analyses
All statistical analyses were performed in each cohort

independently using R version 3.5.2.

Identification and characterization of overlapping variable
methylated CpGs
In order to correct DNAm levels for known con-

founders, these were regressed out of the beta values
using linear regression separately for each cohort. Cov-
ariates were defined as sex, age, blood cell counts33, or
saliva cell counts for BerlinLCS34, smoking scores, and
genotype principal components to account for population
stratification (GRADY: the first two PCs, PReDICT, and
U19 and BerlinLCS: the first five PCs, HBCS: the first
three PCs). Using residuals from these models, the med-
ian absolute deviation (MAD) was estimated per CpG as a
robust measure of DNAm variability within each cohort.
The MAD score is preferred for this purpose as it is not
driven by outliers. We tested the 80th, 85th, 90th, and
95th percentile as cutoffs of the MAD score. The 80th
percentile cutoff resulted in 45,962 variably methylated
probes (VMPs) overlapping among GRADY, PReDICT,
and U19. These VMPs were selected for initial analysis
and defined as overlapping VMPs. For a sensitivity ana-
lysis, we further regressed out cohort-specific covariates
(anxiety score in U19; depression score in GRADY, PRe-
DICT, and U19; PTSD score in GRADY and U19).
Addition of these covariates did not influence the results.

Explaining variability of VMPs
To assess to what extent genotype, environment (CA),

genotype and environment, as well as genotype–environment
interaction contributed to variation in VMPs, four different
linear regression models (1–4) were tested for each over-
lapping VMP in each cohort to identify the model with the
largest adjusted R2.
(1) Environment model (CA): VMP ~ covariates+CA.
(2) Genotype model (G): VMP ~ covariates+Gi.
(3) Additive model (G+CA): VMP ~ covariates+Gi

+CA.
(4) Interaction model (G × CA): VMP ~ covariates+

Gi+CA+Gi × CA.
VMP represents the uncorrected beta value of the

identified variable CpG site described above. For models
(2–4), Gi is a SNP-genotype coded by the minor allele
count (0, 1, 2); all pruned SNPs in a cis window of ±1MB
around the VMP were tested sequentially and the SNP
that presented with the largest adjusted R2 was selected
for further analysis. Covariates are the DNAm con-
founders and cohort-specific covariates described in the
preceding section. In models (3) and (4) all possible SNP
and CA combinations were tested
The model with the largest adjusted R2 value, explaining

the most variance across (1)–(4), was chosen as the best
model for that VMP.
A work flow of the general procedure is depicted in

Supplementary Fig. 1.

Mapping VMPs to genomic regions
VMPs were mapped to their genomic location using the R-

packages minfi28 and ChIPseeker44 and to their correspond-
ing ChromHMM states based on histone ChiP-Seq peaks
from the Roadmap Epigenomics project derived for blood
cells (http://egg2.wustl.edu/roadmap/data/byFileType/peaks/
consolidated/broadPeak/).
Enrichment tests were performed using Fisher’s tests.

The significance levels were set using Bonferroni correc-
tion according to the number of performed tests.

Gene-set enrichment analysis
VMP sites were mapped to their closest genes using the

matchGenes function in the R-package bumphunter45.
Gene-set enrichments were tested using FUMA’s GEN-
E2FUNC v1.3.546 setting the FDR adjusted p values for
enrichment to 0.05 and considering Gene Ontology (GO)
terms as well as tissue-specific transcripts derived from
GTEx v647. A minimum number of ten genes had to
overlap with the specific gene set. We compared enrich-
ments for stable across age G × CA CpGs (variably
methylated CpGs with the best model being G × CA
across all cohorts, n= 1400) and stable in adults G × CA
CpGs (variably methylated CpGs with the best model
being G × CA in the three adult cohorts, but not in the
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other two cohorts, n= 670). We used the group of
inconsistent CpGs (n= 5652) that showed different best
models across all three adult cohorts as control. For the
enrichment, we created ten random subsets of genes
mapping to these inconsistent CpGs and equal in size to
the number of genes mapping to stable across age G × CA
CpGs (n= 1123 genes).

Results
VMPs in adults with self-reported retrospective CA
We first assessed which of the four models (CA, G, G+

CA, and G × CA) explained most of the DNAm variability
in the three adult cohorts (see Table 1) that used the CTQ
for retrospective assessment of CA. CpGs with a MAD
score larger than the 80th MAD percentile and over-
lapping between GRADY, PReDICT, and U19 were
defined as overlapping VMPs (n= 45,962 VMPs, see Fig.
1a). As previously described17, VMPs were enriched for
distinct genomic features, including intergenic regions
(p < 2.20 × 10−16, OR= 1.65, Fisher’s test) and enhancers
(p < 2. 20 × 10−16, OR= 1.87, Fisher’s test).
We examined whether interindividual differences in

DNAm levels of overlapping VMPs were better explained
by genotype in cis (defined as 1MB window around the
specific VMP), by CA (E), or by additive or interaction

effects of cis genotype (G) and CA together. For each
cohort, we compared the adjusted R2 of four regression
models (CA, G, G+CA, G × CA) to find the model which
best explained DNAm variation in VMPs. The adjusted R2

is well suited to determine the most predictive model as it
adjusts for the number of parameters in the model and
only increases if the inclusion of these parameters also
increases the model fit48. In all cohorts, the majority of
VMPs was best explained by additive or interactive effects
of G and CA (see Fig. 1b and Supplementary Fig. 2 for
details) with CA alone being the best model only in very
few VMPs.
Over 80% of overlapping VMPs showed a consistent

best model across at least two of the three cohorts (see
Fig. 1c and Supplementary Fig. 3). As we based our results
on pruned SNPs and as all cohorts had a different ethnic
background, we matched the consistency based on best
model for the same CpG only and did not require that the
same SNPs be included in the model across cohorts. The
majority of VMPs (43.87%) were consistently best
explained by G × CA models. These results remained
stable with inclusion of cohort-specific covariates,
including symptoms severity (see Supplementary Figs. 4
and 5). For all cohorts, ΔadjR2, i.e., the difference between
the adjusted R2 of the best models to the adjusted R2 of

Fig. 1 Overlapping VMPs between GRADY, PReDICT, and U19. Venn diagram of overlapping VMPs for GRADY, PReDICT, and U19 at a MAD score
threshold at the 80th percentile (a). Distribution of the best models explaining variation in DNAm across the three adult cohorts. Percentage of
overlapping VMPs (n= 45,962) best explained by G, CA, G+ CA, or G × CA in each cohort using the highest adjusted R2 (b). Consistent best models
across three adult cohorts. Percentage of overlapping VMPs (n= 45,962) best explained by the same model type (G, CA, G+ CA, or G × CA) in at least
two cohorts (c).
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the next best model, was highest for VMPs where G × CA
was chosen as best model and significantly larger as
compared to G and G+CA models (see Supplementary
Fig. 6A–C, p < 2.2 × 10−16 for all cohorts, Wilcoxon’s
test). VMPs with at least two consistent best G × CA
models were enriched in repressed Polycomb (see Fig. 2a,
b) and presented with a significantly longer distance
between SNP and VMP than VMPs with other consistent
models (see Fig. 2c).

VMPs across the life course and with documented
adversity
To test if the identified combined effects of genotype

and CA are stable across the life course and also observed
with documented and not only self-reported adversity, we
used two additional cohorts. The BerlinLCS cohort,
consisting of 173 DNAm saliva samples of children aged
between 3 and 5 years, of which 86 were recruited from
social services and other child welfare centers due to MT
or neglect. At the other end of the age spectrum is the

HBCS, a cohort of 151 elderly individuals, of which 77 had
been evacuated to Sweden or Denmark during World
War II.
To base the comparison of best models across the

developmental trajectory on the same CpG sites in all
cohorts, we used the overlap of VMPs identified in
GRADY/PReDICT/U19 and CpGs available in BerlinLCS
as well as in HBCS. This resulted in 36,091 VMPs avail-
able in all five cohorts. Even with this more restricted set
of VMPs, the best models remained combined models of
G and CA (see Fig. 3a and Supplementary Fig. 7).
There were 1672 VMPs (5.4%) with a consistent best

model across all five cohorts (see Fig. 3b). Among these
stable VMPs, 83.73% had G × CA as the best model (n=
1400, “stable across age G × CA CpGs”).
In comparison, only 670 VMPs were consistently best

explained by G × CA across the three adult cohorts but
neither in the BerlinLCS nor in the HBCS (“stable in
adults G × CA CpGs”). Both groups of CpGs were sig-
nificantly enriched (p < 0.002 for both groups of CpGs) for

Fig. 2 Enrichment of overlapping VMPs with regard to ChromHMM states. Histone mark enrichment for overlapping VMPs with regard to other
450K CpG sites (above panel) (a). Histone mark enrichment for overlapping VMPs (below) with at least two consistent best G, G+ CA, or G × CA
models against overlapping VMPs with no consistent models. Green color indicates depletion, and red color indicates enrichment. Thick black lines
around the rectangles indicate significant enrichment/depletion based on Fisher’s tests and a Bonferroni threshold of p < 4.66 × 10−04. VMPs with at
least two consistent best G × CA models were enriched in repressed Polycomb (p= 5.48 × 10−19, OR= 1.19, Fisher’s test) (b). Average distance
between SNP and CpG site for consistent best G (left), consistent best G+ CA (middle), and consistent G × CA models (right). CpGs with at least two
consistent G × CA models presented with a significantly longer distance between SNP and VMP than VMPs with other consistent models (mean
absolute distance= 271.83 kb, p < 2.20 × 10−16, Wilcoxon’s test) (c).
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eQTM sites49 as compared to all 450K CpGs (based on
10,000 randomly drawn CpG sets).

Tissue specificity and functions of genes linked to stable
G × CA CpGs
We annotated each VMP to the closest gene and used

the list of unique genes to test for differences in gene-set
enrichment using FUMA45. As a background set, we
mapped the 36,091 VMPs which were used in the analysis
across all five cohorts representing 10,308 unique genes.
We tested gene lists derived from stable across age G ×

CA CpGs and stable in adults G × CA CpGs for enrich-
ment in differentially expressed gene sets across different
tissues using the GTEx database46. The genes mapping to
stable across age G × CA CpGs (1400 CpGs mapping to
1123 unique genes) were significantly enriched for genes
specific to brain (FDR-corrected p value= 2.85 × 10−04)
but not to other tissues. This enrichment for brain tran-
scripts was not observed for genes mapped to stable in
adults G × CA CpGs (670 CpGs mapping to 584 unique
genes, FDR-corrected p value= 1.00 × 10−01). As control,
we compared these to enrichments from random subsets
from the list of inconsistent CpGs that showed different
best models across all three adult groups (see Fig. 1c,
n= 5652). We randomly picked groups of 1123 genes
(which is the number of genes matching to stable across
age G × CA CpGs) matching to these CpGs. None of these
subsets showed significant tissue-specific enrichments
(see Fig. 4).

Stable across age G × CA CpGs were significantly enri-
ched for 24 GO terms, and stable in adults G × CA CpGs
were significantly enriched for 35 GO terms in the bio-
logical processes categories (all FDR-corrected p values <
0.05). While some of these processes overlapped, stable
across age G × CA CpGs were selectively significantly
enriched in categories reflecting processes related to
neuron development and synapse organization (see Sup-
plementary Fig. 8). Stable across age G × CA CpGs were
significantly enriched for the cellular component terms
“neuron part” and “neuron projection” and the molecular
function terms “DNA binding transcription factor activ-
ity,” “sequence specific DNA binding,” and “sequence
specific double DNA binding” (all FDR-corrected p values
< 0.05). Stable in adults G × CA CpGs had no cellular
component or molecular function term significantly
enriched. Non-consistent CpGs showed no significant
consistent enrichments for any GO terms.
The analyses investigating tissue-specific gene expres-

sion as well as GO terms point to the fact that stable G ×
CA VMPs could have a distinct functional relevance,
related to development and brain function.

Discussion
In this study, we investigated the contributions of

exposure to CA, genotype in cis as well as their additive
and interactive effects on interindividual variability of
DNAm in variable CpGs in peripheral tissues. Inde-
pendent of the age of the cohort, we observed that

Fig. 3 Distribution of the best models explaining variation in DNAm across the five cohorts. Percentage of overlapping VMPs (n= 36,091) best
explained by G, CA, G+ CA, or G × CA in each cohort using the highest adjusted R2 For HBCS, 49.03% of VMPs presented with best model G × CA,
37.40% with best model G, and 13.55% with best model G+ CA, and for BerlinLCS, 61.26% of VMPs presented with best model G × CA, 29.51% with
best model G, and 8.75% with G+ CA (a). Consistency of best model explaining DNAm variability in VMPs across five cohorts. Percentage of VMPs
with the same model explaining variation in DNAm best overlapping between the cohorts stratified by model type (b).
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models combining G and CA best explained DNAm
variability in the majority of CpGs, suggesting that the
extent of the combined impact on DNAm is similar for
prenatal and postnatal adversity. For a set of 1400
VMPs, DNAm variability was best explained by G × CA
across five independent cohorts, ranging in age from
early childhood to late adulthood, suggesting a specific
signature of CA independent of age. Interestingly, the
genes mapping to these shared VMPs point to their
potential relevance in development and brain function.
Our results support the importance of including geno-
type when investigating environmental effects on
DNAm, given that only G × CA but not CA alone
unmasked a consistent pattern of DNAm variability
across cohorts.
Our data are in line with previous EWAS results for CA

that so far have yielded either inconsistent or negative

results for the effect of CA alone50,51. Indeed, very few of
the overlapping VMPs were best explained by environ-
ment independent of genotype (<1%). The majority of
VMPs (~60–80%) were best explained by additive and
interactive effects of genotype and environment together.
To evaluate if we could also detect combined effects of
CA and genotype in CpG sites which had previously been
associated with CA, we used the publicly available results
from Marzi et al.50 who studied the effect of early-life
victimization on DNAm in peripheral blood in early
adulthood and reported 63 CpG sites to be associated
with victimization on an array-wide significant level.
Testing these CpG sites in our adult cohorts revealed that
CA alone was never the best model but that G × CA
models were the most consistent best models for the
majority (n= 20) of CpGs with consistent best models in
at least two cohorts (n= 38).

Fig. 4 Enrichment of stable across age G × CA, stable in adults G × CA and non-consistent CpGs for GTEx upregulated gene sets. The x-axis
denotes the −log10(p value), and the y-axis the specific tissue type. Significant enrichments (based on FDR correction of 0.05) are depicted in blue,
and nonsignificant in gray. For the group of nonconsistent CpGs, we randomly picked ten subsets of genes mapping to nonconsistent CpGs, equal in
number to the genes mapping to stable across age G × CA CpGs. None of these subsets presented with significant adjusted p values for enrichment.
In the plot, median p values across all subsets are depicted.
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The proportions of best G × CA models which we
identified in our cohorts are analogous to the ~70% of
variably methylated regions that were shown to be best
explained by integrated genetic and prenatal environment
effects in neonates16,17. Our findings corroborate that
genotype acts as an important moderating influence on
main environmental effects on DNAm also in the context
of a postnatal stressor. In fact, G × CA was the model that
best explained DNAm variance in the majority (83%) of
CpGs that had the same best model across cohorts. The
stability of the best model for these CpGs cuts across a
large age range from early childhood to late adulthood,
across tissue (blood and saliva), different DNAm varia-
bility thresholds, psychiatric diagnoses, as well as self-
reported retrospective vs. verified CA. Additional studies
in longitudinal cohorts with repeated measures of DNAm
in the same individuals are needed to confirm such sta-
bility across time.
The VMPs with stable G × CA models mapped to genes

with distinct functionality. In contrast to VMPs that only
showed the G × CA model in all adult cohorts, but not
more, the genes mapped to stable G × CA VMPs across
five cohorts were enriched for transcripts specific to the
brain (see Fig. 4) as well as to GO terms related to brain
development and synapse function. Importantly, G × CA
VMPs were also enriched for eQTMs, indicating that any
factors influencing variability at these loci will have effects
on gene transcription. Our samples size was under-
powered to reliably detect consistent effect directions of
SNP × CA interactions after correction for multiple test-
ing. For this larger, ethnically homogenous cohorts will be
necessary. Nonetheless, our results can highlight those
CpGs that are most influenced by the combination of a
genetic variant in cis and CA in a consistent manner
across age, unmasking an epigenetic signature of CA.
Consistent with the previous literature14, cis meQTLs

were clearly apparent in the five independent cohorts with
diverse ethnic backgrounds. Although it is known that
Caucasian and African American meQTLs significantly
overlap, 14–45% shows specificity for ethnicity52. In our
analysis, we found converging evidence that G × CA
interactions best explain variability of DNAm across dif-
ferent ethnicities, but this does not exclude ancestry
specific effects. To identify such specific interaction
effects, larger samples for each ethnicity are required.
Finally, we want to note the limitations of this study.

First, we restricted our analyses to specific DNAm array
contents and to potentially functional CpGs, i.e., VMPs,
so that we do not reflect every CpG tested on the array.
Second, we used the adjusted R2 as main criterion for
model fit as we were mainly interested in explaining
variability of DNAm. A variety of other model selection
criteria are available53 and which one to choose is an
ongoing debate. Third, our analysis does not provide

sufficient power to detect consistent effect directions after
correction for multiple testing. In order to have sufficient
power to assess specific SNP × CA effects surviving mul-
tiple testing correction larger, ethnically homogenous
cohorts are necessary. All reported interactions are sta-
tistical interactions and limited to a cis window around
the CpG site. Further experiments are required to assess
whether these would also reflect biological/mechanistic
interactions. Along the same lines, much larger cohorts
will be needed to assess potential trans effects.
Furthermore, strategies to reduce the number of tests,

i.e., SNPs, are needed. Possible methods include the pre-
filtering for functionally relevant SNPs using deep learn-
ing algorithm such as DeepSEA for instance54, or
experimental approaches such as SNPs disrupting tran-
scription factor binding or chromatin structure55. How-
ever, our results can highlight those CpGs that are most
influenced by the combination of a genetic variant in cis
and CA in a consistent manner across five cohorts and
hence are environmentally sensitive. While our results
highlight convergent effects of CA across ages, we did not
have sufficient power to identify effects specific to certain
forms of CA or neglect, or related to specific timing of the
exposure. Our analysis provides a possible framework of
how specific combined effects of genotype and environ-
ment on DNAm might be studied in the future.
In conclusion, in this study, we show that CA has a

larger impact on DNAm in combination with genetic
variation than by itself. Inclusion of information on
genetic variation may thus help to uncover impact of
environmental factors on epigenetic measures that would
otherwise remain concealed. Such combined approaches
could support to identify gene pathways relevant to risk or
resilience following exposure to CA.
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